Properties

Label 8-465e4-1.1-c0e4-0-0
Degree $8$
Conductor $46753250625$
Sign $1$
Analytic cond. $0.00290028$
Root an. cond. $0.481731$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 4-s − 4·5-s + 2·6-s − 8·10-s + 12-s − 4·15-s + 2·17-s + 3·19-s − 4·20-s − 3·23-s + 10·25-s − 8·30-s − 31-s − 2·32-s + 4·34-s + 6·38-s − 6·46-s + 2·47-s − 49-s + 20·50-s + 2·51-s + 2·53-s + 3·57-s − 4·60-s − 2·61-s + ⋯
L(s)  = 1  + 2·2-s + 3-s + 4-s − 4·5-s + 2·6-s − 8·10-s + 12-s − 4·15-s + 2·17-s + 3·19-s − 4·20-s − 3·23-s + 10·25-s − 8·30-s − 31-s − 2·32-s + 4·34-s + 6·38-s − 6·46-s + 2·47-s − 49-s + 20·50-s + 2·51-s + 2·53-s + 3·57-s − 4·60-s − 2·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(0.00290028\)
Root analytic conductor: \(0.481731\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{4} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8423577551\)
\(L(\frac12)\) \(\approx\) \(0.8423577551\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
5$C_1$ \( ( 1 + T )^{4} \)
31$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
good2$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
7$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
19$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
23$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
43$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
47$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
53$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
59$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
71$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
73$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
79$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
83$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
89$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.200313253094735482642034836555, −7.86981536979193501296300366325, −7.66114530167905324722248674862, −7.53037687664239779805333705603, −7.32626997757935531498737623882, −7.20640943406272869220833045740, −7.05685343820241552767001254678, −6.57415191952588966007488319832, −6.00942766220173371116897722317, −5.79055349743668554015690216602, −5.60320453543794570246483467647, −5.27156868949862611646974197434, −5.02696050875600660725499687046, −4.75261768268870028687845134520, −4.49943002105415351046842674801, −4.17500236475816437904917529251, −4.15695407487105695507077282479, −3.55971439393958071159535120744, −3.54459350698007769024446441711, −3.50420858773501775128994078260, −3.34979100782801195602045840862, −2.68029501482923561067883671494, −2.56917715112723712525892423177, −1.57845791781518073905096450400, −1.00003935748774709023449833860, 1.00003935748774709023449833860, 1.57845791781518073905096450400, 2.56917715112723712525892423177, 2.68029501482923561067883671494, 3.34979100782801195602045840862, 3.50420858773501775128994078260, 3.54459350698007769024446441711, 3.55971439393958071159535120744, 4.15695407487105695507077282479, 4.17500236475816437904917529251, 4.49943002105415351046842674801, 4.75261768268870028687845134520, 5.02696050875600660725499687046, 5.27156868949862611646974197434, 5.60320453543794570246483467647, 5.79055349743668554015690216602, 6.00942766220173371116897722317, 6.57415191952588966007488319832, 7.05685343820241552767001254678, 7.20640943406272869220833045740, 7.32626997757935531498737623882, 7.53037687664239779805333705603, 7.66114530167905324722248674862, 7.86981536979193501296300366325, 8.200313253094735482642034836555

Graph of the $Z$-function along the critical line