L(s) = 1 | + (1 + i)5-s + 4i·7-s + (2 + 2i)11-s + (−3 + 3i)13-s + (2 − 2i)19-s + 4i·23-s − 3i·25-s + (−3 + 3i)29-s − 8·31-s + (−4 + 4i)35-s + (1 + i)37-s + 8i·41-s + (2 + 2i)43-s + 8·47-s − 9·49-s + ⋯ |
L(s) = 1 | + (0.447 + 0.447i)5-s + 1.51i·7-s + (0.603 + 0.603i)11-s + (−0.832 + 0.832i)13-s + (0.458 − 0.458i)19-s + 0.834i·23-s − 0.600i·25-s + (−0.557 + 0.557i)29-s − 1.43·31-s + (−0.676 + 0.676i)35-s + (0.164 + 0.164i)37-s + 1.24i·41-s + (0.304 + 0.304i)43-s + 1.16·47-s − 1.28·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.516684575\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.516684575\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1 - i)T + 5iT^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + (-2 - 2i)T + 11iT^{2} \) |
| 13 | \( 1 + (3 - 3i)T - 13iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + (-2 + 2i)T - 19iT^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 + (3 - 3i)T - 29iT^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 + (-1 - i)T + 37iT^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 + (-2 - 2i)T + 43iT^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-6 - 6i)T + 59iT^{2} \) |
| 61 | \( 1 + (3 - 3i)T - 61iT^{2} \) |
| 67 | \( 1 + (-2 + 2i)T - 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-10 + 10i)T - 83iT^{2} \) |
| 89 | \( 1 + 14iT - 89T^{2} \) |
| 97 | \( 1 + 16T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.979517813796907430883645491759, −7.81018731509377498457742598454, −7.13382360727679963366358994625, −6.44840267835882192432814507882, −5.70912287905670638908115558475, −5.07573528750851677650288197188, −4.20133515384481671265121458018, −3.08189567173313599820962520356, −2.31199355680156840744563380044, −1.64132683647081025443506221245,
0.41491015004468414601844303693, 1.27071299617617662536719783295, 2.43617940295902289040837478800, 3.67239753499002969861231361904, 4.02709059208318173774192784167, 5.19822272498312438838063789690, 5.63467336793547198346468266805, 6.67084466777357941644165444161, 7.34148310313545833153577936953, 7.85313224915706363771166654179