L(s) = 1 | − 2.92i·2-s − 4.57·4-s − 4.30·5-s + 7.91i·7-s + 1.67i·8-s + 12.6i·10-s − 13.3·11-s + 15.9·13-s + 23.1·14-s − 13.3·16-s + (−8.12 + 14.9i)17-s + 36.2·19-s + 19.6·20-s + 38.9i·22-s + 27.6·23-s + ⋯ |
L(s) = 1 | − 1.46i·2-s − 1.14·4-s − 0.861·5-s + 1.13i·7-s + 0.209i·8-s + 1.26i·10-s − 1.20·11-s + 1.22·13-s + 1.65·14-s − 0.836·16-s + (−0.478 + 0.878i)17-s + 1.90·19-s + 0.984·20-s + 1.77i·22-s + 1.20·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.878 + 0.478i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.878 + 0.478i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.195131181\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.195131181\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (8.12 - 14.9i)T \) |
good | 2 | \( 1 + 2.92iT - 4T^{2} \) |
| 5 | \( 1 + 4.30T + 25T^{2} \) |
| 7 | \( 1 - 7.91iT - 49T^{2} \) |
| 11 | \( 1 + 13.3T + 121T^{2} \) |
| 13 | \( 1 - 15.9T + 169T^{2} \) |
| 19 | \( 1 - 36.2T + 361T^{2} \) |
| 23 | \( 1 - 27.6T + 529T^{2} \) |
| 29 | \( 1 - 33.4T + 841T^{2} \) |
| 31 | \( 1 - 41.1iT - 961T^{2} \) |
| 37 | \( 1 - 4.06iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 37.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 36.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + 40.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 46.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 71.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 71.0iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 48.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + 116.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 30.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 125. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 57.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 92.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 27.5iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87194281821616741717806978539, −10.24645826874677559434622131823, −9.003028021220973790107396542497, −8.462177189852900626201155708793, −7.26411501172069901659864479910, −5.81299498766782865552346061852, −4.71235603914603044691171697229, −3.42563905065448190257814806793, −2.73545197470986065523954751492, −1.20733306631988421019412286459,
0.58432361944985940962473754216, 3.16478643080095611976092217518, 4.43743748706336266715000790055, 5.29134758045334688839891541910, 6.45963509360781663253720896045, 7.53916276832779266549342417567, 7.66107744673441762867379485267, 8.734629066512646445309438150236, 9.848906996755254797630484344532, 11.06905402628776067827170506578