Properties

Label 2-459-3.2-c2-0-20
Degree $2$
Conductor $459$
Sign $1$
Analytic cond. $12.5068$
Root an. cond. $3.53650$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.90i·2-s − 11.2·4-s + 3.88i·5-s − 9.05·7-s − 28.3i·8-s − 15.1·10-s + 8.82i·11-s − 14.4·13-s − 35.3i·14-s + 65.7·16-s + 4.12i·17-s + 28.8·19-s − 43.7i·20-s − 34.4·22-s − 0.907i·23-s + ⋯
L(s)  = 1  + 1.95i·2-s − 2.81·4-s + 0.777i·5-s − 1.29·7-s − 3.54i·8-s − 1.51·10-s + 0.802i·11-s − 1.10·13-s − 2.52i·14-s + 4.11·16-s + 0.242i·17-s + 1.51·19-s − 2.18i·20-s − 1.56·22-s − 0.0394i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $1$
Analytic conductor: \(12.5068\)
Root analytic conductor: \(3.53650\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{459} (188, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.04546448704\)
\(L(\frac12)\) \(\approx\) \(0.04546448704\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - 4.12iT \)
good2 \( 1 - 3.90iT - 4T^{2} \)
5 \( 1 - 3.88iT - 25T^{2} \)
7 \( 1 + 9.05T + 49T^{2} \)
11 \( 1 - 8.82iT - 121T^{2} \)
13 \( 1 + 14.4T + 169T^{2} \)
19 \( 1 - 28.8T + 361T^{2} \)
23 \( 1 + 0.907iT - 529T^{2} \)
29 \( 1 + 46.7iT - 841T^{2} \)
31 \( 1 + 31.6T + 961T^{2} \)
37 \( 1 + 26.9T + 1.36e3T^{2} \)
41 \( 1 - 4.19iT - 1.68e3T^{2} \)
43 \( 1 - 47.9T + 1.84e3T^{2} \)
47 \( 1 + 55.5iT - 2.20e3T^{2} \)
53 \( 1 - 66.5iT - 2.80e3T^{2} \)
59 \( 1 + 33.7iT - 3.48e3T^{2} \)
61 \( 1 + 59.3T + 3.72e3T^{2} \)
67 \( 1 + 110.T + 4.48e3T^{2} \)
71 \( 1 + 2.65iT - 5.04e3T^{2} \)
73 \( 1 + 34.1T + 5.32e3T^{2} \)
79 \( 1 + 121.T + 6.24e3T^{2} \)
83 \( 1 + 13.3iT - 6.88e3T^{2} \)
89 \( 1 + 88.4iT - 7.92e3T^{2} \)
97 \( 1 - 95.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24562011726508225271411455798, −9.700791034990064693433857382589, −8.999060496242327158356375239591, −7.47430520878702310907262742673, −7.29646303254547275868835673878, −6.34345747096727469195253619583, −5.50796138257680321363051892091, −4.35158777927892748216028210887, −3.12752152843331608052663777044, −0.02169365623033382022236071508, 1.19422206778325588380870979371, 2.83856297890201795808200241778, 3.48619425832600089085976707450, 4.80913482896492837342188889136, 5.60462316413921953276510866475, 7.42185399443482484722386400688, 8.855639577468211337938466826517, 9.252188923440204185800715629853, 10.01697983716251889715968665937, 10.86366157006101175532340817667

Graph of the $Z$-function along the critical line