Properties

Label 2-456-152.5-c1-0-28
Degree $2$
Conductor $456$
Sign $-0.130 + 0.991i$
Analytic cond. $3.64117$
Root an. cond. $1.90818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.01 + 0.982i)2-s + (−0.984 − 0.173i)3-s + (0.0709 − 1.99i)4-s + (2.00 − 2.38i)5-s + (1.17 − 0.790i)6-s + (−0.650 − 1.12i)7-s + (1.89 + 2.10i)8-s + (0.939 + 0.342i)9-s + (0.306 + 4.40i)10-s + (−3.19 − 1.84i)11-s + (−0.416 + 1.95i)12-s + (2.28 − 0.403i)13-s + (1.76 + 0.508i)14-s + (−2.38 + 2.00i)15-s + (−3.98 − 0.283i)16-s + (−4.34 + 1.58i)17-s + ⋯
L(s)  = 1  + (−0.719 + 0.694i)2-s + (−0.568 − 0.100i)3-s + (0.0354 − 0.999i)4-s + (0.896 − 1.06i)5-s + (0.478 − 0.322i)6-s + (−0.246 − 0.426i)7-s + (0.668 + 0.743i)8-s + (0.313 + 0.114i)9-s + (0.0969 + 1.39i)10-s + (−0.962 − 0.555i)11-s + (−0.120 + 0.564i)12-s + (0.634 − 0.111i)13-s + (0.472 + 0.135i)14-s + (−0.616 + 0.517i)15-s + (−0.997 − 0.0709i)16-s + (−1.05 + 0.383i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $-0.130 + 0.991i$
Analytic conductor: \(3.64117\)
Root analytic conductor: \(1.90818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{456} (157, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 456,\ (\ :1/2),\ -0.130 + 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.411451 - 0.469246i\)
\(L(\frac12)\) \(\approx\) \(0.411451 - 0.469246i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.01 - 0.982i)T \)
3 \( 1 + (0.984 + 0.173i)T \)
19 \( 1 + (1.36 + 4.13i)T \)
good5 \( 1 + (-2.00 + 2.38i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (0.650 + 1.12i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (3.19 + 1.84i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-2.28 + 0.403i)T + (12.2 - 4.44i)T^{2} \)
17 \( 1 + (4.34 - 1.58i)T + (13.0 - 10.9i)T^{2} \)
23 \( 1 + (4.32 - 3.62i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (-0.617 + 1.69i)T + (-22.2 - 18.6i)T^{2} \)
31 \( 1 + (2.13 + 3.70i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 0.384iT - 37T^{2} \)
41 \( 1 + (0.439 - 2.49i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-7.88 + 9.39i)T + (-7.46 - 42.3i)T^{2} \)
47 \( 1 + (-1.33 - 0.484i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + (2.65 + 3.16i)T + (-9.20 + 52.1i)T^{2} \)
59 \( 1 + (-0.866 - 2.38i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (5.61 + 6.69i)T + (-10.5 + 60.0i)T^{2} \)
67 \( 1 + (-0.167 + 0.461i)T + (-51.3 - 43.0i)T^{2} \)
71 \( 1 + (-0.995 - 0.835i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (0.785 - 4.45i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (1.91 - 10.8i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (11.6 - 6.74i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (3.11 + 17.6i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (-17.8 + 6.48i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66307103083448328142898388309, −9.829221695029329569784223584743, −8.958464755133981674637587018248, −8.231446114798965861494230829915, −7.09659501654591276630090503475, −6.00806479440219198514366746108, −5.49902444431008411567191518342, −4.38729442877991963908715985445, −2.00036143924140594145786624222, −0.50333316298690369728668287152, 1.97297588803887835281555207299, 2.90228339292153165762050161731, 4.38870565380059785532278473112, 5.90268168865727456016229434378, 6.66256347068732511671378771615, 7.69825975736459989673893032911, 8.887187943654801477874253474068, 9.783111181696352665404222442425, 10.58466005289532674139334696378, 10.85845653828985182636404595952

Graph of the $Z$-function along the critical line