| L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.618 + 0.618i)3-s − 0.999i·4-s + (−2.12 + 0.707i)5-s − 0.874·6-s + (−1.58 − 2.12i)7-s + (2.12 − 2.12i)8-s + 2.23i·9-s + (−2 − 0.999i)10-s − 5.45i·11-s + (0.618 + 0.618i)12-s + (3.58 − 0.418i)13-s + (0.381 − 2.61i)14-s + (0.874 − 1.74i)15-s + 1.00·16-s + (−0.763 − 0.763i)17-s + ⋯ |
| L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.356 + 0.356i)3-s − 0.499i·4-s + (−0.948 + 0.316i)5-s − 0.356·6-s + (−0.597 − 0.801i)7-s + (0.750 − 0.750i)8-s + 0.745i·9-s + (−0.632 − 0.316i)10-s − 1.64i·11-s + (0.178 + 0.178i)12-s + (0.993 − 0.116i)13-s + (0.102 − 0.699i)14-s + (0.225 − 0.451i)15-s + 0.250·16-s + (−0.185 − 0.185i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.501 + 0.865i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.501 + 0.865i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.954578 - 0.550150i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.954578 - 0.550150i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (2.12 - 0.707i)T \) |
| 7 | \( 1 + (1.58 + 2.12i)T \) |
| 13 | \( 1 + (-3.58 + 0.418i)T \) |
| good | 2 | \( 1 + (-0.707 - 0.707i)T + 2iT^{2} \) |
| 3 | \( 1 + (0.618 - 0.618i)T - 3iT^{2} \) |
| 11 | \( 1 + 5.45iT - 11T^{2} \) |
| 17 | \( 1 + (0.763 + 0.763i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.86iT - 19T^{2} \) |
| 23 | \( 1 + (-0.381 - 0.381i)T + 23iT^{2} \) |
| 29 | \( 1 - 0.763iT - 29T^{2} \) |
| 31 | \( 1 + 5.78T + 31T^{2} \) |
| 37 | \( 1 + (-3.16 - 3.16i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.24T + 41T^{2} \) |
| 43 | \( 1 + (0.854 + 0.854i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.82 - 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.23 - 8.23i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.20iT - 59T^{2} \) |
| 61 | \( 1 + 13.4iT - 61T^{2} \) |
| 67 | \( 1 + (3.70 + 3.70i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.27iT - 71T^{2} \) |
| 73 | \( 1 + (-10.0 - 10.0i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.70iT - 79T^{2} \) |
| 83 | \( 1 + (-9.69 - 9.69i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.3iT - 89T^{2} \) |
| 97 | \( 1 + (-7.40 + 7.40i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03348300890963322558902507398, −10.38444176476421780591817310272, −9.100647103044053547820200370361, −8.004713257757903307151293805767, −6.99670260022680194951757744936, −6.23257163160463661854137032389, −5.19087899083075284902171854489, −4.18462685313326156031214635035, −3.24071735688840595248175712218, −0.62673920435039368153581413614,
1.86514144278583823812981050217, 3.47600239514948681677293101984, 4.10484915979576390227675399126, 5.40450388007677167513836146770, 6.60836867360474048394681376908, 7.53092273632793157885044152823, 8.476224335638739165536183848611, 9.374786435169089849075587696028, 10.58370332165349252023516018473, 11.80548837757998952878129058871