L(s) = 1 | + (−0.804 − 2.47i)2-s + (0.229 − 0.166i)3-s + (−3.86 + 2.80i)4-s − 1.16·5-s + (−0.596 − 0.433i)6-s + (−0.525 − 1.61i)7-s + (5.85 + 4.25i)8-s + (−0.902 + 2.77i)9-s + (0.941 + 2.89i)10-s + (2.26 + 2.42i)11-s + (−0.418 + 1.28i)12-s + (1.00 + 3.08i)13-s + (−3.58 + 2.60i)14-s + (−0.267 + 0.194i)15-s + (2.86 − 8.81i)16-s + (−6.43 + 4.67i)17-s + ⋯ |
L(s) = 1 | + (−0.568 − 1.75i)2-s + (0.132 − 0.0960i)3-s + (−1.93 + 1.40i)4-s − 0.523·5-s + (−0.243 − 0.176i)6-s + (−0.198 − 0.611i)7-s + (2.06 + 1.50i)8-s + (−0.300 + 0.925i)9-s + (0.297 + 0.915i)10-s + (0.683 + 0.730i)11-s + (−0.120 + 0.371i)12-s + (0.278 + 0.856i)13-s + (−0.957 + 0.695i)14-s + (−0.0691 + 0.0502i)15-s + (0.716 − 2.20i)16-s + (−1.56 + 1.13i)17-s + ⋯ |
Λ(s)=(=(451s/2ΓC(s)L(s)(0.984+0.175i)Λ(2−s)
Λ(s)=(=(451s/2ΓC(s+1/2)L(s)(0.984+0.175i)Λ(1−s)
Degree: |
2 |
Conductor: |
451
= 11⋅41
|
Sign: |
0.984+0.175i
|
Analytic conductor: |
3.60125 |
Root analytic conductor: |
1.89769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ451(119,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 451, ( :1/2), 0.984+0.175i)
|
Particular Values
L(1) |
≈ |
0.572696−0.0505721i |
L(21) |
≈ |
0.572696−0.0505721i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−2.26−2.42i)T |
| 41 | 1+(0.000300−6.40i)T |
good | 2 | 1+(0.804+2.47i)T+(−1.61+1.17i)T2 |
| 3 | 1+(−0.229+0.166i)T+(0.927−2.85i)T2 |
| 5 | 1+1.16T+5T2 |
| 7 | 1+(0.525+1.61i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.00−3.08i)T+(−10.5+7.64i)T2 |
| 17 | 1+(6.43−4.67i)T+(5.25−16.1i)T2 |
| 19 | 1+0.642T+19T2 |
| 23 | 1+(−7.42+5.39i)T+(7.10−21.8i)T2 |
| 29 | 1+(5.26−3.82i)T+(8.96−27.5i)T2 |
| 31 | 1−4.54T+31T2 |
| 37 | 1+(−7.97+5.79i)T+(11.4−35.1i)T2 |
| 43 | 1+(0.459−0.334i)T+(13.2−40.8i)T2 |
| 47 | 1+(3.41−10.4i)T+(−38.0−27.6i)T2 |
| 53 | 1+(5.91+4.29i)T+(16.3+50.4i)T2 |
| 59 | 1+7.36T+59T2 |
| 61 | 1+(3.18−9.79i)T+(−49.3−35.8i)T2 |
| 67 | 1+(3.14−9.68i)T+(−54.2−39.3i)T2 |
| 71 | 1+(5.12−3.72i)T+(21.9−67.5i)T2 |
| 73 | 1+(−7.38−5.36i)T+(22.5+69.4i)T2 |
| 79 | 1+(1.33−4.10i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−2.18−6.73i)T+(−67.1+48.7i)T2 |
| 89 | 1+(7.43+5.40i)T+(27.5+84.6i)T2 |
| 97 | 1+(−12.1−8.85i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10937054385435889714200817005, −10.44674226948582585642404968034, −9.338049125776097903579002572802, −8.722258946903771872025582516668, −7.78204824782912598714782237818, −6.64126431765513692408287835973, −4.47781602661990780621196313215, −4.10981967927298364359376740603, −2.64833933969607813221730672060, −1.53359827781495472349603505729,
0.45322365550991947372457673788, 3.33103542953429442528319784598, 4.68792977433084188435284996972, 5.84115666347562426193124385563, 6.46315037171752346071658483294, 7.43667367740876214943877822056, 8.364886277114328134981884410570, 9.165791779793964740976093203340, 9.470528476306157856232335381871, 11.06846925119390634984008462248