Properties

Label 2-450-5.4-c7-0-14
Degree $2$
Conductor $450$
Sign $-0.894 - 0.447i$
Analytic cond. $140.573$
Root an. cond. $11.8563$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·2-s − 64·4-s + 1.01e3i·7-s − 512i·8-s − 1.09e3·11-s − 1.38e3i·13-s − 8.12e3·14-s + 4.09e3·16-s − 1.47e4i·17-s + 3.99e4·19-s − 8.73e3i·22-s + 6.87e4i·23-s + 1.10e4·26-s − 6.50e4i·28-s − 1.02e5·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 1.11i·7-s − 0.353i·8-s − 0.247·11-s − 0.174i·13-s − 0.791·14-s + 0.250·16-s − 0.725i·17-s + 1.33·19-s − 0.174i·22-s + 1.17i·23-s + 0.123·26-s − 0.559i·28-s − 0.780·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(140.573\)
Root analytic conductor: \(11.8563\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :7/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.698289379\)
\(L(\frac12)\) \(\approx\) \(1.698289379\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 1.01e3iT - 8.23e5T^{2} \)
11 \( 1 + 1.09e3T + 1.94e7T^{2} \)
13 \( 1 + 1.38e3iT - 6.27e7T^{2} \)
17 \( 1 + 1.47e4iT - 4.10e8T^{2} \)
19 \( 1 - 3.99e4T + 8.93e8T^{2} \)
23 \( 1 - 6.87e4iT - 3.40e9T^{2} \)
29 \( 1 + 1.02e5T + 1.72e10T^{2} \)
31 \( 1 - 2.27e5T + 2.75e10T^{2} \)
37 \( 1 - 1.60e5iT - 9.49e10T^{2} \)
41 \( 1 + 1.08e4T + 1.94e11T^{2} \)
43 \( 1 - 6.30e5iT - 2.71e11T^{2} \)
47 \( 1 + 4.72e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.49e6iT - 1.17e12T^{2} \)
59 \( 1 - 2.64e6T + 2.48e12T^{2} \)
61 \( 1 - 8.27e5T + 3.14e12T^{2} \)
67 \( 1 + 1.26e5iT - 6.06e12T^{2} \)
71 \( 1 - 1.41e6T + 9.09e12T^{2} \)
73 \( 1 + 9.80e5iT - 1.10e13T^{2} \)
79 \( 1 - 3.56e6T + 1.92e13T^{2} \)
83 \( 1 - 5.67e6iT - 2.71e13T^{2} \)
89 \( 1 + 1.19e7T + 4.42e13T^{2} \)
97 \( 1 - 8.68e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.922538744462511311897321470700, −9.396265159571580656491214089407, −8.392580067793038442942376623981, −7.61687115445874082041347376856, −6.61645827973704068354606505111, −5.51929515510046628631866811924, −5.05589652801223920941944494106, −3.53925079980743067108391165540, −2.47914542076382502569786738107, −1.00529851249938700541985856584, 0.40823009652290547206556487986, 1.27859499811298669053114190722, 2.56072269175267795648787656162, 3.70319121108105951203825417097, 4.47929138321471184749118462970, 5.63757886378326816180014053038, 6.88757342923967390792448964014, 7.77919914404238661338352490871, 8.738826787693138206570904406023, 9.829940955075385515334624409049

Graph of the $Z$-function along the critical line