Properties

Label 2-45-1.1-c7-0-3
Degree $2$
Conductor $45$
Sign $1$
Analytic cond. $14.0573$
Root an. cond. $3.74931$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s − 103·4-s − 125·5-s + 930·7-s − 1.15e3·8-s − 625·10-s + 8.45e3·11-s + 6.22e3·13-s + 4.65e3·14-s + 7.40e3·16-s + 9.59e3·17-s − 4.58e4·19-s + 1.28e4·20-s + 4.22e4·22-s + 1.02e5·23-s + 1.56e4·25-s + 3.11e4·26-s − 9.57e4·28-s + 8.75e4·29-s − 7.62e4·31-s + 1.84e5·32-s + 4.79e4·34-s − 1.16e5·35-s + 2.64e5·37-s − 2.29e5·38-s + 1.44e5·40-s + 1.03e5·41-s + ⋯
L(s)  = 1  + 0.441·2-s − 0.804·4-s − 0.447·5-s + 1.02·7-s − 0.797·8-s − 0.197·10-s + 1.91·11-s + 0.785·13-s + 0.452·14-s + 0.452·16-s + 0.473·17-s − 1.53·19-s + 0.359·20-s + 0.845·22-s + 1.75·23-s + 1/5·25-s + 0.347·26-s − 0.824·28-s + 0.666·29-s − 0.459·31-s + 0.997·32-s + 0.209·34-s − 0.458·35-s + 0.858·37-s − 0.678·38-s + 0.356·40-s + 0.234·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(14.0573\)
Root analytic conductor: \(3.74931\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.062881210\)
\(L(\frac12)\) \(\approx\) \(2.062881210\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p^{3} T \)
good2 \( 1 - 5 T + p^{7} T^{2} \)
7 \( 1 - 930 T + p^{7} T^{2} \)
11 \( 1 - 8450 T + p^{7} T^{2} \)
13 \( 1 - 6220 T + p^{7} T^{2} \)
17 \( 1 - 9590 T + p^{7} T^{2} \)
19 \( 1 + 45884 T + p^{7} T^{2} \)
23 \( 1 - 4440 p T + p^{7} T^{2} \)
29 \( 1 - 87550 T + p^{7} T^{2} \)
31 \( 1 + 76212 T + p^{7} T^{2} \)
37 \( 1 - 264440 T + p^{7} T^{2} \)
41 \( 1 - 103600 T + p^{7} T^{2} \)
43 \( 1 + 324680 T + p^{7} T^{2} \)
47 \( 1 + 855880 T + p^{7} T^{2} \)
53 \( 1 - 958190 T + p^{7} T^{2} \)
59 \( 1 + 1239550 T + p^{7} T^{2} \)
61 \( 1 - 628522 T + p^{7} T^{2} \)
67 \( 1 - 310380 T + p^{7} T^{2} \)
71 \( 1 - 3934300 T + p^{7} T^{2} \)
73 \( 1 + 4556090 T + p^{7} T^{2} \)
79 \( 1 - 5371644 T + p^{7} T^{2} \)
83 \( 1 - 6711060 T + p^{7} T^{2} \)
89 \( 1 - 3346500 T + p^{7} T^{2} \)
97 \( 1 - 15829730 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55894993078942272249108685901, −13.23478361600188541960324780394, −12.02789625590058845029436131512, −11.01139014760218949717549730812, −9.167743149729741710354508711686, −8.315756541112746318253815329890, −6.46005617660228851809924050513, −4.76399221159821826867428792854, −3.71977141679191928923338646376, −1.12734747314895711452786677757, 1.12734747314895711452786677757, 3.71977141679191928923338646376, 4.76399221159821826867428792854, 6.46005617660228851809924050513, 8.315756541112746318253815329890, 9.167743149729741710354508711686, 11.01139014760218949717549730812, 12.02789625590058845029436131512, 13.23478361600188541960324780394, 14.55894993078942272249108685901

Graph of the $Z$-function along the critical line