Properties

Label 2-45-45.7-c2-0-1
Degree $2$
Conductor $45$
Sign $-0.304 - 0.952i$
Analytic cond. $1.22616$
Root an. cond. $1.10732$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.183 + 0.0492i)2-s + (−1.82 + 2.37i)3-s + (−3.43 + 1.98i)4-s + (−1.61 + 4.73i)5-s + (0.218 − 0.526i)6-s + (8.70 − 2.33i)7-s + (1.07 − 1.07i)8-s + (−2.30 − 8.69i)9-s + (0.0643 − 0.948i)10-s + (−7.04 + 12.1i)11-s + (1.56 − 11.7i)12-s + (12.9 + 3.46i)13-s + (−1.48 + 0.856i)14-s + (−8.29 − 12.5i)15-s + (7.78 − 13.4i)16-s + (−0.740 − 0.740i)17-s + ⋯
L(s)  = 1  + (−0.0918 + 0.0246i)2-s + (−0.609 + 0.792i)3-s + (−0.858 + 0.495i)4-s + (−0.323 + 0.946i)5-s + (0.0364 − 0.0877i)6-s + (1.24 − 0.333i)7-s + (0.133 − 0.133i)8-s + (−0.256 − 0.966i)9-s + (0.00643 − 0.0948i)10-s + (−0.640 + 1.10i)11-s + (0.130 − 0.982i)12-s + (0.995 + 0.266i)13-s + (−0.105 + 0.0611i)14-s + (−0.552 − 0.833i)15-s + (0.486 − 0.842i)16-s + (−0.0435 − 0.0435i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $-0.304 - 0.952i$
Analytic conductor: \(1.22616\)
Root analytic conductor: \(1.10732\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :1),\ -0.304 - 0.952i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.438024 + 0.599624i\)
\(L(\frac12)\) \(\approx\) \(0.438024 + 0.599624i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.82 - 2.37i)T \)
5 \( 1 + (1.61 - 4.73i)T \)
good2 \( 1 + (0.183 - 0.0492i)T + (3.46 - 2i)T^{2} \)
7 \( 1 + (-8.70 + 2.33i)T + (42.4 - 24.5i)T^{2} \)
11 \( 1 + (7.04 - 12.1i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (-12.9 - 3.46i)T + (146. + 84.5i)T^{2} \)
17 \( 1 + (0.740 + 0.740i)T + 289iT^{2} \)
19 \( 1 - 7.09iT - 361T^{2} \)
23 \( 1 + (-19.0 - 5.10i)T + (458. + 264.5i)T^{2} \)
29 \( 1 + (-6.18 - 3.56i)T + (420.5 + 728. i)T^{2} \)
31 \( 1 + (-13.0 - 22.6i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + (23.0 + 23.0i)T + 1.36e3iT^{2} \)
41 \( 1 + (36.0 + 62.4i)T + (-840.5 + 1.45e3i)T^{2} \)
43 \( 1 + (-3.22 - 12.0i)T + (-1.60e3 + 924.5i)T^{2} \)
47 \( 1 + (-51.8 + 13.9i)T + (1.91e3 - 1.10e3i)T^{2} \)
53 \( 1 + (-17.2 + 17.2i)T - 2.80e3iT^{2} \)
59 \( 1 + (-27.5 + 15.9i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (-40.7 + 70.5i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (17.1 - 64.1i)T + (-3.88e3 - 2.24e3i)T^{2} \)
71 \( 1 + 36.3T + 5.04e3T^{2} \)
73 \( 1 + (-2.90 + 2.90i)T - 5.32e3iT^{2} \)
79 \( 1 + (-71.8 - 41.5i)T + (3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (13.7 + 51.3i)T + (-5.96e3 + 3.44e3i)T^{2} \)
89 \( 1 - 22.5iT - 7.92e3T^{2} \)
97 \( 1 + (-33.7 + 9.03i)T + (8.14e3 - 4.70e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.89438487291985890879125042611, −14.85890945805189921885544123409, −13.88236055448258918795121965180, −12.23592052988265342103334228210, −11.05736297678091274984209792909, −10.15888185448581514220031954744, −8.592676222475213764903150809414, −7.20694133080755174338001261795, −5.08047746031290113625727923247, −3.85179218546477605945671407091, 1.02363506863875025567228697477, 4.81979266306017987444491851311, 5.76932295554905877743543043240, 8.100902379055240278230184793114, 8.676000757629839711610931193695, 10.75514440625857173391516560123, 11.68728203781221840818739866094, 13.13282574367354337053011950237, 13.72449204180259284987722676076, 15.28182927739155403611467380784

Graph of the $Z$-function along the critical line