L(s) = 1 | + (0.639 + 2.38i)2-s + (2.11 + 2.13i)3-s + (−1.82 + 1.05i)4-s + (−3.10 − 3.91i)5-s + (−3.73 + 6.40i)6-s + (−2.77 − 10.3i)7-s + (3.30 + 3.30i)8-s + (−0.0915 + 8.99i)9-s + (7.36 − 9.92i)10-s + (−5.66 + 9.81i)11-s + (−6.09 − 1.66i)12-s + (2.53 − 9.44i)13-s + (22.9 − 13.2i)14-s + (1.79 − 14.8i)15-s + (−9.99 + 17.3i)16-s + (8.05 − 8.05i)17-s + ⋯ |
L(s) = 1 | + (0.319 + 1.19i)2-s + (0.703 + 0.710i)3-s + (−0.456 + 0.263i)4-s + (−0.621 − 0.783i)5-s + (−0.623 + 1.06i)6-s + (−0.396 − 1.48i)7-s + (0.413 + 0.413i)8-s + (−0.0101 + 0.999i)9-s + (0.736 − 0.992i)10-s + (−0.514 + 0.891i)11-s + (−0.508 − 0.138i)12-s + (0.194 − 0.726i)13-s + (1.63 − 0.946i)14-s + (0.119 − 0.992i)15-s + (−0.624 + 1.08i)16-s + (0.473 − 0.473i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0678 - 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0678 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.04198 + 0.973519i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04198 + 0.973519i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.11 - 2.13i)T \) |
| 5 | \( 1 + (3.10 + 3.91i)T \) |
good | 2 | \( 1 + (-0.639 - 2.38i)T + (-3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (2.77 + 10.3i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (5.66 - 9.81i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-2.53 + 9.44i)T + (-146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-8.05 + 8.05i)T - 289iT^{2} \) |
| 19 | \( 1 + 3.73iT - 361T^{2} \) |
| 23 | \( 1 + (3.60 - 13.4i)T + (-458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (28.7 + 16.6i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-7.67 - 13.2i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-13.7 + 13.7i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-4.87 - 8.44i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-38.3 + 10.2i)T + (1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (0.451 + 1.68i)T + (-1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (45.3 + 45.3i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-10.2 + 5.91i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (28.0 - 48.5i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-47.4 - 12.7i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 - 22.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-37.2 - 37.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-105. - 60.8i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-105. + 28.1i)T + (5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 16.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (46.1 + 172. i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.83708850750439460162088800824, −15.02252169090559841218809396795, −13.82717074971802764277485103672, −12.97843334698844180006114469587, −10.89681479703910610944680916340, −9.658448956958566744314515287648, −7.977529787888644353664953601169, −7.35170710858317958525026134980, −5.15549492303648857851414676766, −3.97682244398515980539783315653,
2.41479343500399823251895378311, 3.50460185932627643497495028602, 6.30059681113349294979115879236, 7.933109147849307879280457738863, 9.305486795745478406848939086135, 10.92903858573706346729463345487, 11.96927249754256703292659720711, 12.69776411778712435553919974527, 13.94012158715179244267511084656, 15.07510437184357621783587180817