Properties

Label 2-45-45.22-c2-0-8
Degree $2$
Conductor $45$
Sign $0.0678 + 0.997i$
Analytic cond. $1.22616$
Root an. cond. $1.10732$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.639 − 2.38i)2-s + (2.11 − 2.13i)3-s + (−1.82 − 1.05i)4-s + (−3.10 + 3.91i)5-s + (−3.73 − 6.40i)6-s + (−2.77 + 10.3i)7-s + (3.30 − 3.30i)8-s + (−0.0915 − 8.99i)9-s + (7.36 + 9.92i)10-s + (−5.66 − 9.81i)11-s + (−6.09 + 1.66i)12-s + (2.53 + 9.44i)13-s + (22.9 + 13.2i)14-s + (1.79 + 14.8i)15-s + (−9.99 − 17.3i)16-s + (8.05 + 8.05i)17-s + ⋯
L(s)  = 1  + (0.319 − 1.19i)2-s + (0.703 − 0.710i)3-s + (−0.456 − 0.263i)4-s + (−0.621 + 0.783i)5-s + (−0.623 − 1.06i)6-s + (−0.396 + 1.48i)7-s + (0.413 − 0.413i)8-s + (−0.0101 − 0.999i)9-s + (0.736 + 0.992i)10-s + (−0.514 − 0.891i)11-s + (−0.508 + 0.138i)12-s + (0.194 + 0.726i)13-s + (1.63 + 0.946i)14-s + (0.119 + 0.992i)15-s + (−0.624 − 1.08i)16-s + (0.473 + 0.473i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0678 + 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0678 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $0.0678 + 0.997i$
Analytic conductor: \(1.22616\)
Root analytic conductor: \(1.10732\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :1),\ 0.0678 + 0.997i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.04198 - 0.973519i\)
\(L(\frac12)\) \(\approx\) \(1.04198 - 0.973519i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.11 + 2.13i)T \)
5 \( 1 + (3.10 - 3.91i)T \)
good2 \( 1 + (-0.639 + 2.38i)T + (-3.46 - 2i)T^{2} \)
7 \( 1 + (2.77 - 10.3i)T + (-42.4 - 24.5i)T^{2} \)
11 \( 1 + (5.66 + 9.81i)T + (-60.5 + 104. i)T^{2} \)
13 \( 1 + (-2.53 - 9.44i)T + (-146. + 84.5i)T^{2} \)
17 \( 1 + (-8.05 - 8.05i)T + 289iT^{2} \)
19 \( 1 - 3.73iT - 361T^{2} \)
23 \( 1 + (3.60 + 13.4i)T + (-458. + 264.5i)T^{2} \)
29 \( 1 + (28.7 - 16.6i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (-7.67 + 13.2i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-13.7 - 13.7i)T + 1.36e3iT^{2} \)
41 \( 1 + (-4.87 + 8.44i)T + (-840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (-38.3 - 10.2i)T + (1.60e3 + 924.5i)T^{2} \)
47 \( 1 + (0.451 - 1.68i)T + (-1.91e3 - 1.10e3i)T^{2} \)
53 \( 1 + (45.3 - 45.3i)T - 2.80e3iT^{2} \)
59 \( 1 + (-10.2 - 5.91i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (28.0 + 48.5i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-47.4 + 12.7i)T + (3.88e3 - 2.24e3i)T^{2} \)
71 \( 1 - 22.2T + 5.04e3T^{2} \)
73 \( 1 + (-37.2 + 37.2i)T - 5.32e3iT^{2} \)
79 \( 1 + (-105. + 60.8i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (-105. - 28.1i)T + (5.96e3 + 3.44e3i)T^{2} \)
89 \( 1 + 16.0iT - 7.92e3T^{2} \)
97 \( 1 + (46.1 - 172. i)T + (-8.14e3 - 4.70e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.07510437184357621783587180817, −13.94012158715179244267511084656, −12.69776411778712435553919974527, −11.96927249754256703292659720711, −10.92903858573706346729463345487, −9.305486795745478406848939086135, −7.933109147849307879280457738863, −6.30059681113349294979115879236, −3.50460185932627643497495028602, −2.41479343500399823251895378311, 3.97682244398515980539783315653, 5.15549492303648857851414676766, 7.35170710858317958525026134980, 7.977529787888644353664953601169, 9.658448956958566744314515287648, 10.89681479703910610944680916340, 12.97843334698844180006114469587, 13.82717074971802764277485103672, 15.02252169090559841218809396795, 15.83708850750439460162088800824

Graph of the $Z$-function along the critical line