L(s) = 1 | + (3.47 + 0.930i)2-s + (−2.93 + 0.635i)3-s + (7.72 + 4.46i)4-s + (−2.41 − 4.37i)5-s + (−10.7 − 0.522i)6-s + (−4.78 − 1.28i)7-s + (12.5 + 12.5i)8-s + (8.19 − 3.72i)9-s + (−4.32 − 17.4i)10-s + (1.37 + 2.38i)11-s + (−25.4 − 8.17i)12-s + (−9.15 + 2.45i)13-s + (−15.4 − 8.91i)14-s + (9.87 + 11.2i)15-s + (13.9 + 24.2i)16-s + (9.17 − 9.17i)17-s + ⋯ |
L(s) = 1 | + (1.73 + 0.465i)2-s + (−0.977 + 0.211i)3-s + (1.93 + 1.11i)4-s + (−0.483 − 0.875i)5-s + (−1.79 − 0.0871i)6-s + (−0.684 − 0.183i)7-s + (1.56 + 1.56i)8-s + (0.910 − 0.413i)9-s + (−0.432 − 1.74i)10-s + (0.125 + 0.216i)11-s + (−2.12 − 0.681i)12-s + (−0.704 + 0.188i)13-s + (−1.10 − 0.636i)14-s + (0.658 + 0.752i)15-s + (0.873 + 1.51i)16-s + (0.539 − 0.539i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.851 - 0.524i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.851 - 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.78061 + 0.504790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.78061 + 0.504790i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.93 - 0.635i)T \) |
| 5 | \( 1 + (2.41 + 4.37i)T \) |
good | 2 | \( 1 + (-3.47 - 0.930i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (4.78 + 1.28i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-1.37 - 2.38i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (9.15 - 2.45i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-9.17 + 9.17i)T - 289iT^{2} \) |
| 19 | \( 1 - 32.1iT - 361T^{2} \) |
| 23 | \( 1 + (0.669 - 0.179i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (-30.1 + 17.3i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-12.8 + 22.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (13.0 - 13.0i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-20.2 + 35.0i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (0.987 - 3.68i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (3.70 + 0.993i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (31.2 + 31.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-36.8 - 21.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (6.56 + 11.3i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-12.0 - 44.9i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 114.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (18.7 + 18.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-18.3 + 10.5i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-3.95 + 14.7i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 92.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-151. - 40.7i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.81868782380855477002879113044, −14.58228673652223310657003201295, −13.22052535350957435845062584439, −12.24469344588415928733641181695, −11.81120604184045750204704877631, −9.961988552124005658866512124149, −7.55574368980988706492289128982, −6.20635391977831080454060593992, −5.02136552671230114467345097224, −3.88185690617760663562789592818,
3.00094119241672327225036497227, 4.70836794080559892135826508318, 6.16908153535737838021811622231, 7.07777041484096641165904550715, 10.26010726714930462568891619736, 11.20817386594474699070700437865, 12.13936734034264915111429790837, 12.96590946006348818681282359161, 14.20363814273377007054201633364, 15.34529597859921381149541627474