L(s) = 1 | + (−0.668 + 1.15i)2-s + (0.320 − 2.98i)3-s + (1.10 + 1.91i)4-s + (4.23 − 2.65i)5-s + (3.24 + 2.36i)6-s + (7.10 + 4.10i)7-s − 8.30·8-s + (−8.79 − 1.91i)9-s + (0.244 + 6.68i)10-s + (−5.67 − 3.27i)11-s + (6.06 − 2.68i)12-s + (1.29 − 0.749i)13-s + (−9.50 + 5.49i)14-s + (−6.56 − 13.4i)15-s + (1.13 − 1.97i)16-s − 15.1·17-s + ⋯ |
L(s) = 1 | + (−0.334 + 0.579i)2-s + (0.106 − 0.994i)3-s + (0.276 + 0.478i)4-s + (0.847 − 0.531i)5-s + (0.540 + 0.394i)6-s + (1.01 + 0.586i)7-s − 1.03·8-s + (−0.977 − 0.212i)9-s + (0.0244 + 0.668i)10-s + (−0.515 − 0.297i)11-s + (0.505 − 0.223i)12-s + (0.0998 − 0.0576i)13-s + (−0.679 + 0.392i)14-s + (−0.437 − 0.899i)15-s + (0.0710 − 0.123i)16-s − 0.889·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.170i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.985 - 0.170i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.11913 + 0.0961186i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11913 + 0.0961186i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.320 + 2.98i)T \) |
| 5 | \( 1 + (-4.23 + 2.65i)T \) |
good | 2 | \( 1 + (0.668 - 1.15i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (-7.10 - 4.10i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (5.67 + 3.27i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-1.29 + 0.749i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 15.1T + 289T^{2} \) |
| 19 | \( 1 + 25.9T + 361T^{2} \) |
| 23 | \( 1 + (-11.6 - 20.1i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-6.96 - 4.02i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-22.5 - 38.9i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 62.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-9.97 + 5.75i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (36.9 + 21.3i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (8.25 - 14.2i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 66.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-0.373 + 0.215i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-15.7 + 27.3i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-83.1 + 47.9i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 84.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 63.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-9.06 + 15.7i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (50.4 - 87.4i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 86.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-59.7 - 34.5i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.73067331168679261760986062922, −14.50289162953085672990796069905, −13.23662424033831412231628614138, −12.34373893687300200877221275497, −11.10135446820483853864535770188, −8.838261861450142972421340906016, −8.284517163312024928323555714105, −6.78975721692745436079015503154, −5.49757900314930166945962436960, −2.24449268370324841970653219697,
2.38633511987613589269834583600, 4.73594006835469114535369407081, 6.37506745960650496821212747390, 8.550487729243069684932627728247, 9.945660293530081571326674118530, 10.63930771577132634094388927615, 11.40255605262774137508380999032, 13.46781628916707029068515572193, 14.73636073380954299757057639641, 15.20294583330812373831179851106