L(s) = 1 | + (−1.42 − 2.46i)2-s + (2.93 − 0.600i)3-s + (−2.03 + 3.52i)4-s + (3.58 − 3.48i)5-s + (−5.65 − 6.38i)6-s + (−8.42 + 4.86i)7-s + 0.212·8-s + (8.27 − 3.52i)9-s + (−13.6 − 3.86i)10-s + (0.370 − 0.214i)11-s + (−3.87 + 11.5i)12-s + (16.2 + 9.37i)13-s + (23.9 + 13.8i)14-s + (8.44 − 12.4i)15-s + (7.84 + 13.5i)16-s − 2.85·17-s + ⋯ |
L(s) = 1 | + (−0.710 − 1.23i)2-s + (0.979 − 0.200i)3-s + (−0.509 + 0.882i)4-s + (0.716 − 0.697i)5-s + (−0.942 − 1.06i)6-s + (−1.20 + 0.694i)7-s + 0.0265·8-s + (0.919 − 0.392i)9-s + (−1.36 − 0.386i)10-s + (0.0337 − 0.0194i)11-s + (−0.322 + 0.966i)12-s + (1.24 + 0.721i)13-s + (1.71 + 0.987i)14-s + (0.562 − 0.826i)15-s + (0.490 + 0.849i)16-s − 0.168·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.219 + 0.975i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.219 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.649165 - 0.811722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.649165 - 0.811722i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.93 + 0.600i)T \) |
| 5 | \( 1 + (-3.58 + 3.48i)T \) |
good | 2 | \( 1 + (1.42 + 2.46i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (8.42 - 4.86i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-0.370 + 0.214i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-16.2 - 9.37i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 2.85T + 289T^{2} \) |
| 19 | \( 1 - 0.530T + 361T^{2} \) |
| 23 | \( 1 + (10.8 - 18.8i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (21.0 - 12.1i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-6.33 + 10.9i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 14.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (33.1 + 19.1i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (50.0 - 28.8i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (24.7 + 42.9i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 44.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (54.6 + 31.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-11.0 - 19.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (28.1 + 16.2i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 89.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 144. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (25.1 + 43.5i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-38.2 - 66.2i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 28.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-19.9 + 11.4i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.34882678951523581893507099877, −13.59981945934261396995364593046, −12.92526997019484038194427007212, −11.80070417620897354807797924036, −10.05870667450663185111351126015, −9.254699203930660155811284100455, −8.582591173498161933109011207895, −6.25823417628895643810649631626, −3.44193565443855247708879492350, −1.81536395474325011540476579004,
3.31454091906698459621703957371, 6.14572344106295474964416661553, 7.12164227580943243734278666380, 8.450393832353767931090244564996, 9.634330137921487379793099459017, 10.45420511819450952870162452525, 13.07068321029395180669826841548, 13.91177524598019624576115250169, 15.04818717164605642148797357453, 15.91579881961170279714705139086