Properties

Label 2-448-1.1-c7-0-73
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $139.948$
Root an. cond. $11.8299$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 68.3·3-s − 180.·5-s + 343·7-s + 2.48e3·9-s − 392.·11-s − 6.22e3·13-s − 1.23e4·15-s − 1.81e3·17-s + 5.49e4·19-s + 2.34e4·21-s − 1.00e5·23-s − 4.55e4·25-s + 2.02e4·27-s − 4.67e4·29-s + 2.20e4·31-s − 2.68e4·33-s − 6.19e4·35-s + 1.80e5·37-s − 4.25e5·39-s − 9.16e3·41-s − 1.73e5·43-s − 4.48e5·45-s − 1.04e6·47-s + 1.17e5·49-s − 1.24e5·51-s + 1.25e6·53-s + 7.09e4·55-s + ⋯
L(s)  = 1  + 1.46·3-s − 0.646·5-s + 0.377·7-s + 1.13·9-s − 0.0889·11-s − 0.785·13-s − 0.944·15-s − 0.0897·17-s + 1.83·19-s + 0.552·21-s − 1.72·23-s − 0.582·25-s + 0.197·27-s − 0.355·29-s + 0.133·31-s − 0.130·33-s − 0.244·35-s + 0.584·37-s − 1.14·39-s − 0.0207·41-s − 0.332·43-s − 0.733·45-s − 1.47·47-s + 0.142·49-s − 0.131·51-s + 1.15·53-s + 0.0574·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(139.948\)
Root analytic conductor: \(11.8299\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 343T \)
good3 \( 1 - 68.3T + 2.18e3T^{2} \)
5 \( 1 + 180.T + 7.81e4T^{2} \)
11 \( 1 + 392.T + 1.94e7T^{2} \)
13 \( 1 + 6.22e3T + 6.27e7T^{2} \)
17 \( 1 + 1.81e3T + 4.10e8T^{2} \)
19 \( 1 - 5.49e4T + 8.93e8T^{2} \)
23 \( 1 + 1.00e5T + 3.40e9T^{2} \)
29 \( 1 + 4.67e4T + 1.72e10T^{2} \)
31 \( 1 - 2.20e4T + 2.75e10T^{2} \)
37 \( 1 - 1.80e5T + 9.49e10T^{2} \)
41 \( 1 + 9.16e3T + 1.94e11T^{2} \)
43 \( 1 + 1.73e5T + 2.71e11T^{2} \)
47 \( 1 + 1.04e6T + 5.06e11T^{2} \)
53 \( 1 - 1.25e6T + 1.17e12T^{2} \)
59 \( 1 + 1.44e6T + 2.48e12T^{2} \)
61 \( 1 + 5.91e5T + 3.14e12T^{2} \)
67 \( 1 - 3.02e6T + 6.06e12T^{2} \)
71 \( 1 + 3.19e6T + 9.09e12T^{2} \)
73 \( 1 - 3.68e6T + 1.10e13T^{2} \)
79 \( 1 + 7.75e6T + 1.92e13T^{2} \)
83 \( 1 + 5.86e6T + 2.71e13T^{2} \)
89 \( 1 + 1.22e7T + 4.42e13T^{2} \)
97 \( 1 + 1.36e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527924815339979025263510057128, −8.357264657295481556395139323056, −7.83496484038830031850656995848, −7.18397951309457562776671464735, −5.61404892767704206772143130248, −4.37781883405165493663106518607, −3.51039968371510075211036954071, −2.58614121186491720094226173676, −1.54831940492250953697221899594, 0, 1.54831940492250953697221899594, 2.58614121186491720094226173676, 3.51039968371510075211036954071, 4.37781883405165493663106518607, 5.61404892767704206772143130248, 7.18397951309457562776671464735, 7.83496484038830031850656995848, 8.357264657295481556395139323056, 9.527924815339979025263510057128

Graph of the $Z$-function along the critical line