Properties

Label 2-448-1.1-c5-0-37
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s − 10·5-s − 49·7-s − 179·9-s + 340·11-s + 294·13-s + 80·15-s + 1.22e3·17-s − 2.43e3·19-s + 392·21-s + 2.00e3·23-s − 3.02e3·25-s + 3.37e3·27-s + 6.74e3·29-s + 8.85e3·31-s − 2.72e3·33-s + 490·35-s − 9.18e3·37-s − 2.35e3·39-s − 1.45e4·41-s − 8.10e3·43-s + 1.79e3·45-s − 312·47-s + 2.40e3·49-s − 9.80e3·51-s + 1.46e4·53-s − 3.40e3·55-s + ⋯
L(s)  = 1  − 0.513·3-s − 0.178·5-s − 0.377·7-s − 0.736·9-s + 0.847·11-s + 0.482·13-s + 0.0918·15-s + 1.02·17-s − 1.54·19-s + 0.193·21-s + 0.788·23-s − 0.967·25-s + 0.891·27-s + 1.48·29-s + 1.65·31-s − 0.434·33-s + 0.0676·35-s − 1.10·37-s − 0.247·39-s − 1.35·41-s − 0.668·43-s + 0.131·45-s − 0.0206·47-s + 1/7·49-s − 0.528·51-s + 0.715·53-s − 0.151·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( 1 + 8 T + p^{5} T^{2} \)
5 \( 1 + 2 p T + p^{5} T^{2} \)
11 \( 1 - 340 T + p^{5} T^{2} \)
13 \( 1 - 294 T + p^{5} T^{2} \)
17 \( 1 - 1226 T + p^{5} T^{2} \)
19 \( 1 + 128 p T + p^{5} T^{2} \)
23 \( 1 - 2000 T + p^{5} T^{2} \)
29 \( 1 - 6746 T + p^{5} T^{2} \)
31 \( 1 - 8856 T + p^{5} T^{2} \)
37 \( 1 + 9182 T + p^{5} T^{2} \)
41 \( 1 + 14574 T + p^{5} T^{2} \)
43 \( 1 + 8108 T + p^{5} T^{2} \)
47 \( 1 + 312 T + p^{5} T^{2} \)
53 \( 1 - 14634 T + p^{5} T^{2} \)
59 \( 1 - 27656 T + p^{5} T^{2} \)
61 \( 1 + 34338 T + p^{5} T^{2} \)
67 \( 1 + 12316 T + p^{5} T^{2} \)
71 \( 1 - 520 p T + p^{5} T^{2} \)
73 \( 1 + 61718 T + p^{5} T^{2} \)
79 \( 1 + 64752 T + p^{5} T^{2} \)
83 \( 1 - 77056 T + p^{5} T^{2} \)
89 \( 1 + 8166 T + p^{5} T^{2} \)
97 \( 1 - 20650 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02914255892216674031743836549, −8.781477591953328602132474289966, −8.225552640337394653190819250585, −6.73360728464515668817266051037, −6.22175967570012927166684709937, −5.10849512172106563152790832223, −3.93265446939383881499784269418, −2.84407447871826044236658906515, −1.23860938228257135813214668380, 0, 1.23860938228257135813214668380, 2.84407447871826044236658906515, 3.93265446939383881499784269418, 5.10849512172106563152790832223, 6.22175967570012927166684709937, 6.73360728464515668817266051037, 8.225552640337394653190819250585, 8.781477591953328602132474289966, 10.02914255892216674031743836549

Graph of the $Z$-function along the critical line