L(s) = 1 | + (−0.565 − 0.980i)3-s + (3.20 + 1.84i)5-s + (−2.72 + 6.44i)7-s + (3.85 − 6.68i)9-s + (3.28 + 5.69i)11-s + 1.88i·13-s − 4.18i·15-s + (−0.399 − 0.692i)17-s + (−14.6 + 25.3i)19-s + (7.86 − 0.982i)21-s + (22.4 + 12.9i)23-s + (−5.66 − 9.81i)25-s − 18.9·27-s + 38.2i·29-s + (6.26 − 3.61i)31-s + ⋯ |
L(s) = 1 | + (−0.188 − 0.326i)3-s + (0.640 + 0.369i)5-s + (−0.388 + 0.921i)7-s + (0.428 − 0.742i)9-s + (0.298 + 0.517i)11-s + 0.145i·13-s − 0.278i·15-s + (−0.0235 − 0.0407i)17-s + (−0.769 + 1.33i)19-s + (0.374 − 0.0467i)21-s + (0.974 + 0.562i)23-s + (−0.226 − 0.392i)25-s − 0.700·27-s + 1.31i·29-s + (0.201 − 0.116i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.668628327\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.668628327\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.72 - 6.44i)T \) |
good | 3 | \( 1 + (0.565 + 0.980i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-3.20 - 1.84i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-3.28 - 5.69i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 1.88iT - 169T^{2} \) |
| 17 | \( 1 + (0.399 + 0.692i)T + (-144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (14.6 - 25.3i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-22.4 - 12.9i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 38.2iT - 841T^{2} \) |
| 31 | \( 1 + (-6.26 + 3.61i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-56.7 - 32.7i)T + (684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 55.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 22.3T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-16.3 - 9.42i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-0.264 + 0.152i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-27.0 - 46.9i)T + (-1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-28.4 - 16.4i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-4.74 - 8.21i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 33.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-47.2 - 81.9i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-7.35 - 4.24i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 77.8T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-23.8 + 41.3i)T + (-3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 125.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06267671560511599839265916597, −9.901487311847262598163990699380, −9.439755294904244015383002078637, −8.381981227702168582528646705934, −7.08298327303354419025415537667, −6.33459255096912137463032874214, −5.60791745919772801982295959042, −4.13034998470181819405447146013, −2.76925451693201186722624293729, −1.49468160963279661791176461072,
0.76414134812781462506902275706, 2.44324869813297319235419082429, 4.02246945280920363684109788598, 4.86558175098277326971786992352, 6.01049046371396807563477984384, 6.97705628949237324622831256875, 7.995222009324494448683785951266, 9.172800326839336489621094161486, 9.826279473522112912809580356606, 10.82273631081431165975113163283