L(s) = 1 | + 5.43i·3-s + 6.12i·5-s + (6.21 − 3.23i)7-s − 20.5·9-s − 15.2·11-s + 3.00i·13-s − 33.3·15-s + 21.6i·17-s − 11.8i·19-s + (17.5 + 33.7i)21-s + 1.72·23-s − 12.5·25-s − 62.8i·27-s + 41.1·29-s − 8.50i·31-s + ⋯ |
L(s) = 1 | + 1.81i·3-s + 1.22i·5-s + (0.887 − 0.461i)7-s − 2.28·9-s − 1.38·11-s + 0.231i·13-s − 2.22·15-s + 1.27i·17-s − 0.626i·19-s + (0.836 + 1.60i)21-s + 0.0748·23-s − 0.502·25-s − 2.32i·27-s + 1.41·29-s − 0.274i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.228349911\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.228349911\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-6.21 + 3.23i)T \) |
good | 3 | \( 1 - 5.43iT - 9T^{2} \) |
| 5 | \( 1 - 6.12iT - 25T^{2} \) |
| 11 | \( 1 + 15.2T + 121T^{2} \) |
| 13 | \( 1 - 3.00iT - 169T^{2} \) |
| 17 | \( 1 - 21.6iT - 289T^{2} \) |
| 19 | \( 1 + 11.8iT - 361T^{2} \) |
| 23 | \( 1 - 1.72T + 529T^{2} \) |
| 29 | \( 1 - 41.1T + 841T^{2} \) |
| 31 | \( 1 + 8.50iT - 961T^{2} \) |
| 37 | \( 1 + 53.1T + 1.36e3T^{2} \) |
| 41 | \( 1 - 43.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 36.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + 30.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 30T + 2.80e3T^{2} \) |
| 59 | \( 1 - 73.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 5.67iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 28.7T + 4.48e3T^{2} \) |
| 71 | \( 1 - 5.53T + 5.04e3T^{2} \) |
| 73 | \( 1 - 94.9iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 81.5T + 6.24e3T^{2} \) |
| 83 | \( 1 + 86.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 27.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 100. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94881851550043141572107449279, −10.44190176099591493997657887626, −10.11833417428346855704614713248, −8.725346024292644286515680049687, −7.980547251063529967176739231301, −6.69699929787677922216445914668, −5.41296079648523479402855401423, −4.61266215396720601723518585367, −3.58073443980855305138723091982, −2.56279088805458355110054179458,
0.50169817016792925087487846483, 1.67140672544115934542138631581, 2.75180132977316826928167585303, 5.03449204480899484932365337876, 5.42796633788734408403857587772, 6.78165743687652202850429811075, 7.83721587951755282247087036489, 8.239335241373027190998446621954, 9.035854529868835315577946953646, 10.55067582847726102410574845678