L(s) = 1 | + (−0.207 − 0.358i)3-s + (−0.914 + 1.58i)5-s + (−1 − 2.44i)7-s + (1.41 − 2.44i)9-s + (−1.20 − 2.09i)11-s − 2.82·13-s + 0.757·15-s + (0.0857 + 0.148i)17-s + (3.20 − 5.55i)19-s + (−0.671 + 0.866i)21-s + (2.62 − 4.54i)23-s + (0.828 + 1.43i)25-s − 2.41·27-s + 2.82·29-s + (−2.79 − 4.83i)31-s + ⋯ |
L(s) = 1 | + (−0.119 − 0.207i)3-s + (−0.408 + 0.708i)5-s + (−0.377 − 0.925i)7-s + (0.471 − 0.816i)9-s + (−0.363 − 0.630i)11-s − 0.784·13-s + 0.195·15-s + (0.0208 + 0.0360i)17-s + (0.735 − 1.27i)19-s + (−0.146 + 0.188i)21-s + (0.546 − 0.946i)23-s + (0.165 + 0.286i)25-s − 0.464·27-s + 0.525·29-s + (−0.501 − 0.868i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.659192 - 0.708894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.659192 - 0.708894i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 3 | \( 1 + (0.207 + 0.358i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.914 - 1.58i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.20 + 2.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.20 + 5.55i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.62 + 4.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + (2.79 + 4.83i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.32 + 7.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 + (5.20 - 9.01i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.44 - 9.43i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.32 + 7.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.37 + 2.38i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.03 - 5.25i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 + 7.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95614411977874142871229350556, −10.01290893501265768808526386761, −9.222516880965004924801455184258, −7.87713352570676301230496992873, −7.02500977325575792464335640147, −6.54120658042557691256455019767, −5.02991398503370514751615415304, −3.79336242746594523140399416328, −2.83168037886774448896074089838, −0.61948367379206650898328426888,
1.86296701807325539386889680588, 3.36722949478731769330955766202, 4.90888593548456703371061188053, 5.23754296771729787380190483317, 6.75195004197372641543140633103, 7.82083917459625762814060130512, 8.533399731774335095735356787707, 9.762464965702838080531567489925, 10.13149505297603394641852147224, 11.55119768788563491093807703119