L(s) = 1 | + (−0.207 + 0.358i)3-s + (−0.914 − 1.58i)5-s + (−1 + 2.44i)7-s + (1.41 + 2.44i)9-s + (−1.20 + 2.09i)11-s − 2.82·13-s + 0.757·15-s + (0.0857 − 0.148i)17-s + (3.20 + 5.55i)19-s + (−0.671 − 0.866i)21-s + (2.62 + 4.54i)23-s + (0.828 − 1.43i)25-s − 2.41·27-s + 2.82·29-s + (−2.79 + 4.83i)31-s + ⋯ |
L(s) = 1 | + (−0.119 + 0.207i)3-s + (−0.408 − 0.708i)5-s + (−0.377 + 0.925i)7-s + (0.471 + 0.816i)9-s + (−0.363 + 0.630i)11-s − 0.784·13-s + 0.195·15-s + (0.0208 − 0.0360i)17-s + (0.735 + 1.27i)19-s + (−0.146 − 0.188i)21-s + (0.546 + 0.946i)23-s + (0.165 − 0.286i)25-s − 0.464·27-s + 0.525·29-s + (−0.501 + 0.868i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0725 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0725 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.659192 + 0.708894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.659192 + 0.708894i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1 - 2.44i)T \) |
good | 3 | \( 1 + (0.207 - 0.358i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.914 + 1.58i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.20 - 2.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-0.0857 + 0.148i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.20 - 5.55i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.62 - 4.54i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + (2.79 - 4.83i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.32 - 7.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 + (5.20 + 9.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.44 + 9.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.32 - 7.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.37 - 2.38i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + (-7.32 + 12.6i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.03 + 5.25i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55119768788563491093807703119, −10.13149505297603394641852147224, −9.762464965702838080531567489925, −8.533399731774335095735356787707, −7.82083917459625762814060130512, −6.75195004197372641543140633103, −5.23754296771729787380190483317, −4.90888593548456703371061188053, −3.36722949478731769330955766202, −1.86296701807325539386889680588,
0.61948367379206650898328426888, 2.83168037886774448896074089838, 3.79336242746594523140399416328, 5.02991398503370514751615415304, 6.54120658042557691256455019767, 7.02500977325575792464335640147, 7.87713352570676301230496992873, 9.222516880965004924801455184258, 10.01290893501265768808526386761, 10.95614411977874142871229350556