Properties

Label 2-4464-1.1-c1-0-29
Degree $2$
Conductor $4464$
Sign $1$
Analytic cond. $35.6452$
Root an. cond. $5.97036$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.77·5-s − 4.71·7-s + 5.30·11-s + 3.30·13-s + 1.05·17-s + 0.837·19-s + 9.27·25-s + 3.75·29-s − 31-s − 17.8·35-s + 4.24·37-s − 7.21·41-s − 0.809·43-s + 5.55·47-s + 15.2·49-s − 1.42·53-s + 20.0·55-s − 3.89·59-s − 13.6·61-s + 12.4·65-s − 15.1·67-s + 4.83·71-s − 9.11·73-s − 25.0·77-s + 9.93·79-s + 5.80·83-s + 4·85-s + ⋯
L(s)  = 1  + 1.68·5-s − 1.78·7-s + 1.60·11-s + 0.917·13-s + 0.256·17-s + 0.192·19-s + 1.85·25-s + 0.696·29-s − 0.179·31-s − 3.01·35-s + 0.698·37-s − 1.12·41-s − 0.123·43-s + 0.810·47-s + 2.18·49-s − 0.195·53-s + 2.70·55-s − 0.507·59-s − 1.75·61-s + 1.55·65-s − 1.84·67-s + 0.574·71-s − 1.06·73-s − 2.85·77-s + 1.11·79-s + 0.637·83-s + 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4464\)    =    \(2^{4} \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(35.6452\)
Root analytic conductor: \(5.97036\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.655332684\)
\(L(\frac12)\) \(\approx\) \(2.655332684\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 + T \)
good5 \( 1 - 3.77T + 5T^{2} \)
7 \( 1 + 4.71T + 7T^{2} \)
11 \( 1 - 5.30T + 11T^{2} \)
13 \( 1 - 3.30T + 13T^{2} \)
17 \( 1 - 1.05T + 17T^{2} \)
19 \( 1 - 0.837T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 3.75T + 29T^{2} \)
37 \( 1 - 4.24T + 37T^{2} \)
41 \( 1 + 7.21T + 41T^{2} \)
43 \( 1 + 0.809T + 43T^{2} \)
47 \( 1 - 5.55T + 47T^{2} \)
53 \( 1 + 1.42T + 53T^{2} \)
59 \( 1 + 3.89T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 + 15.1T + 67T^{2} \)
71 \( 1 - 4.83T + 71T^{2} \)
73 \( 1 + 9.11T + 73T^{2} \)
79 \( 1 - 9.93T + 79T^{2} \)
83 \( 1 - 5.80T + 83T^{2} \)
89 \( 1 - 9.11T + 89T^{2} \)
97 \( 1 + 1.33T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.884069260539594987088877946334, −7.39052405686087236299135002635, −6.50197661701866625392430313338, −6.24016091075552906674468704150, −5.81035733884210768108760363306, −4.62546081342297595357289259781, −3.55552989567525059086846467710, −3.01357347062244040463556646080, −1.86984959854100982667035162467, −0.964506117885466793161119200401, 0.964506117885466793161119200401, 1.86984959854100982667035162467, 3.01357347062244040463556646080, 3.55552989567525059086846467710, 4.62546081342297595357289259781, 5.81035733884210768108760363306, 6.24016091075552906674468704150, 6.50197661701866625392430313338, 7.39052405686087236299135002635, 8.884069260539594987088877946334

Graph of the $Z$-function along the critical line