L(s) = 1 | − 2-s + (0.5 − 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)6-s + 4·7-s − 8-s + (1 + 1.73i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s + (0.5 − 0.866i)12-s − 6·13-s − 4·14-s + 0.999·15-s + 16-s + 2·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.288 − 0.499i)3-s + 0.5·4-s + (0.223 + 0.387i)5-s + (−0.204 + 0.353i)6-s + 1.51·7-s − 0.353·8-s + (0.333 + 0.577i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s + (0.144 − 0.249i)12-s − 1.66·13-s − 1.06·14-s + 0.258·15-s + 0.250·16-s + 0.485·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32903 + 0.158184i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32903 + 0.158184i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 223 | \( 1 + (14 - 5.19i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 4T + 7T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6T + 13T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.5 + 9.52i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-4.5 + 7.79i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.5 - 4.33i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + (-4.5 + 7.79i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.5 + 7.79i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 - 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.5 + 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.5 - 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.5 + 2.59i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87674307827051269127210149097, −10.30804846636960323366633224926, −9.330902531358128447905348487320, −8.218615588977790226278756074337, −7.51106906973175091634153742766, −7.00525067486069476568448606628, −5.42988925606068373484747932559, −4.41090381433194355574196239511, −2.40707935905835771923030077474, −1.66488588265969981710572083852,
1.20512999023140444990448211418, 2.72867424841901022524385981552, 4.34675352525955637728884807942, 5.17368611403784948619434279212, 6.56188425785692976055843762617, 7.68309656228203128479833481314, 8.469857521694126426972111050148, 9.262741533766614024679382652318, 10.00243992120207769428364309038, 10.94785906528394400422863814662