L(s) = 1 | − 3·2-s + 4·4-s + 6·5-s + 39·8-s − 18·10-s − 6·11-s + 32·13-s − 125·16-s − 6·17-s − 64·19-s + 24·20-s + 18·22-s + 6·23-s + 202·25-s − 96·26-s + 504·29-s − 40·31-s + 252·32-s + 18·34-s + 248·37-s + 192·38-s + 234·40-s + 900·41-s + 752·43-s − 24·44-s − 18·46-s − 12·47-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1/2·4-s + 0.536·5-s + 1.72·8-s − 0.569·10-s − 0.164·11-s + 0.682·13-s − 1.95·16-s − 0.0856·17-s − 0.772·19-s + 0.268·20-s + 0.174·22-s + 0.0543·23-s + 1.61·25-s − 0.724·26-s + 3.22·29-s − 0.231·31-s + 1.39·32-s + 0.0907·34-s + 1.10·37-s + 0.819·38-s + 0.924·40-s + 3.42·41-s + 2.66·43-s − 0.0822·44-s − 0.0576·46-s − 0.0372·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(4.897619926\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.897619926\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 7 | | \( 1 \) |
good | 2 | $D_4\times C_2$ | \( 1 + 3 T + 5 T^{2} - 9 p^{2} T^{3} - 15 p^{3} T^{4} - 9 p^{5} T^{5} + 5 p^{6} T^{6} + 3 p^{9} T^{7} + p^{12} T^{8} \) |
| 5 | $D_4\times C_2$ | \( 1 - 6 T - 166 T^{2} + 288 T^{3} + 20679 T^{4} + 288 p^{3} T^{5} - 166 p^{6} T^{6} - 6 p^{9} T^{7} + p^{12} T^{8} \) |
| 11 | $D_4\times C_2$ | \( 1 + 6 T - 10 p^{2} T^{2} - 8496 T^{3} - 266961 T^{4} - 8496 p^{3} T^{5} - 10 p^{8} T^{6} + 6 p^{9} T^{7} + p^{12} T^{8} \) |
| 13 | $D_{4}$ | \( ( 1 - 16 T + 2406 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 17 | $D_4\times C_2$ | \( 1 + 6 T - 9742 T^{2} - 288 T^{3} + 71294847 T^{4} - 288 p^{3} T^{5} - 9742 p^{6} T^{6} + 6 p^{9} T^{7} + p^{12} T^{8} \) |
| 19 | $D_4\times C_2$ | \( 1 + 64 T - 2438 T^{2} - 459776 T^{3} - 32447189 T^{4} - 459776 p^{3} T^{5} - 2438 p^{6} T^{6} + 64 p^{9} T^{7} + p^{12} T^{8} \) |
| 23 | $D_4\times C_2$ | \( 1 - 6 T - 7834 T^{2} + 98784 T^{3} - 86537001 T^{4} + 98784 p^{3} T^{5} - 7834 p^{6} T^{6} - 6 p^{9} T^{7} + p^{12} T^{8} \) |
| 29 | $D_{4}$ | \( ( 1 - 252 T + 56446 T^{2} - 252 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 31 | $D_4\times C_2$ | \( 1 + 40 T + 15490 T^{2} - 2938880 T^{3} - 742237181 T^{4} - 2938880 p^{3} T^{5} + 15490 p^{6} T^{6} + 40 p^{9} T^{7} + p^{12} T^{8} \) |
| 37 | $D_4\times C_2$ | \( 1 - 248 T - 36710 T^{2} + 766816 T^{3} + 3964901275 T^{4} + 766816 p^{3} T^{5} - 36710 p^{6} T^{6} - 248 p^{9} T^{7} + p^{12} T^{8} \) |
| 41 | $D_{4}$ | \( ( 1 - 450 T + 175642 T^{2} - 450 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 43 | $D_{4}$ | \( ( 1 - 376 T + 161526 T^{2} - 376 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 47 | $D_4\times C_2$ | \( 1 + 12 T - 141646 T^{2} - 790272 T^{3} + 9310238259 T^{4} - 790272 p^{3} T^{5} - 141646 p^{6} T^{6} + 12 p^{9} T^{7} + p^{12} T^{8} \) |
| 53 | $D_4\times C_2$ | \( 1 + 1104 T + 616586 T^{2} + 336141504 T^{3} + 159062942139 T^{4} + 336141504 p^{3} T^{5} + 616586 p^{6} T^{6} + 1104 p^{9} T^{7} + p^{12} T^{8} \) |
| 59 | $D_4\times C_2$ | \( 1 - 804 T + 265802 T^{2} + 24235776 T^{3} - 30073788309 T^{4} + 24235776 p^{3} T^{5} + 265802 p^{6} T^{6} - 804 p^{9} T^{7} + p^{12} T^{8} \) |
| 61 | $D_4\times C_2$ | \( 1 - 428 T - 242702 T^{2} + 12016528 T^{3} + 88279223131 T^{4} + 12016528 p^{3} T^{5} - 242702 p^{6} T^{6} - 428 p^{9} T^{7} + p^{12} T^{8} \) |
| 67 | $D_4\times C_2$ | \( 1 + 148 T - 418886 T^{2} - 23788928 T^{3} + 97249529179 T^{4} - 23788928 p^{3} T^{5} - 418886 p^{6} T^{6} + 148 p^{9} T^{7} + p^{12} T^{8} \) |
| 71 | $D_{4}$ | \( ( 1 + 954 T + 13106 p T^{2} + 954 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 73 | $D_4\times C_2$ | \( 1 + 1072 T + 85906 T^{2} + 305781568 T^{3} + 532173766867 T^{4} + 305781568 p^{3} T^{5} + 85906 p^{6} T^{6} + 1072 p^{9} T^{7} + p^{12} T^{8} \) |
| 79 | $D_4\times C_2$ | \( 1 - 572 T - 574478 T^{2} + 48285952 T^{3} + 408592434547 T^{4} + 48285952 p^{3} T^{5} - 574478 p^{6} T^{6} - 572 p^{9} T^{7} + p^{12} T^{8} \) |
| 83 | $D_{4}$ | \( ( 1 + 1944 T + 1957030 T^{2} + 1944 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
| 89 | $D_4\times C_2$ | \( 1 - 366 T - 1022134 T^{2} + 92908368 T^{3} + 745127969775 T^{4} + 92908368 p^{3} T^{5} - 1022134 p^{6} T^{6} - 366 p^{9} T^{7} + p^{12} T^{8} \) |
| 97 | $D_{4}$ | \( ( 1 - 808 T + 903054 T^{2} - 808 p^{3} T^{3} + p^{6} T^{4} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70887290058268337892042066929, −7.34203235972544338880367265736, −7.25010443349320313655467647837, −6.91160243297082169381731331586, −6.88217638156899595831087168303, −6.09899216010792745419136971054, −6.06692356030992509089717607215, −6.05575762583689036866682641091, −5.95781937289982003910301433886, −5.27831217177298894793606939471, −4.94652375154764174859598021832, −4.57679872110058763843848078805, −4.41967751051134351224267921482, −4.38932228561993039311415171594, −4.25058211168099495238479215315, −3.50068073048632801504316173733, −3.21678054004419363902619678191, −2.74207287823686732510167972984, −2.46499507995740152647152630667, −2.44659918695036171573150551731, −1.81414456876622575841962064649, −1.19314018676567476159778557209, −1.14313618393196912280212985987, −0.952161377659516411008576707828, −0.41563477382527532338172114273,
0.41563477382527532338172114273, 0.952161377659516411008576707828, 1.14313618393196912280212985987, 1.19314018676567476159778557209, 1.81414456876622575841962064649, 2.44659918695036171573150551731, 2.46499507995740152647152630667, 2.74207287823686732510167972984, 3.21678054004419363902619678191, 3.50068073048632801504316173733, 4.25058211168099495238479215315, 4.38932228561993039311415171594, 4.41967751051134351224267921482, 4.57679872110058763843848078805, 4.94652375154764174859598021832, 5.27831217177298894793606939471, 5.95781937289982003910301433886, 6.05575762583689036866682641091, 6.06692356030992509089717607215, 6.09899216010792745419136971054, 6.88217638156899595831087168303, 6.91160243297082169381731331586, 7.25010443349320313655467647837, 7.34203235972544338880367265736, 7.70887290058268337892042066929