L(s) = 1 | + (−0.138 − 0.0315i)2-s + (−1.78 − 0.859i)4-s + (−0.192 + 0.241i)5-s + (0.709 + 2.54i)7-s + (0.441 + 0.352i)8-s + (0.0342 − 0.0272i)10-s + (−3.20 − 0.730i)11-s + (0.890 + 0.203i)13-s + (−0.0177 − 0.375i)14-s + (2.41 + 3.03i)16-s + (−6.36 + 3.06i)17-s − 1.38i·19-s + (0.549 − 0.264i)20-s + (0.419 + 0.202i)22-s + (−2.81 + 5.84i)23-s + ⋯ |
L(s) = 1 | + (−0.0978 − 0.0223i)2-s + (−0.891 − 0.429i)4-s + (−0.0859 + 0.107i)5-s + (0.268 + 0.963i)7-s + (0.156 + 0.124i)8-s + (0.0108 − 0.00862i)10-s + (−0.965 − 0.220i)11-s + (0.246 + 0.0563i)13-s + (−0.00473 − 0.100i)14-s + (0.604 + 0.758i)16-s + (−1.54 + 0.743i)17-s − 0.317i·19-s + (0.122 − 0.0592i)20-s + (0.0895 + 0.0431i)22-s + (−0.587 + 1.21i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.397 - 0.917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.397 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.329144 + 0.501212i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.329144 + 0.501212i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.709 - 2.54i)T \) |
good | 2 | \( 1 + (0.138 + 0.0315i)T + (1.80 + 0.867i)T^{2} \) |
| 5 | \( 1 + (0.192 - 0.241i)T + (-1.11 - 4.87i)T^{2} \) |
| 11 | \( 1 + (3.20 + 0.730i)T + (9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.890 - 0.203i)T + (11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + (6.36 - 3.06i)T + (10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 + 1.38iT - 19T^{2} \) |
| 23 | \( 1 + (2.81 - 5.84i)T + (-14.3 - 17.9i)T^{2} \) |
| 29 | \( 1 + (-1.58 - 3.29i)T + (-18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 - 8.97iT - 31T^{2} \) |
| 37 | \( 1 + (-4.12 + 1.98i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 + (3.46 - 4.34i)T + (-9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (2.74 + 3.44i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-1.61 + 7.07i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (-5.09 + 10.5i)T + (-33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (5.11 + 6.41i)T + (-13.1 + 57.5i)T^{2} \) |
| 61 | \( 1 + (1.81 + 3.76i)T + (-38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + 12.5T + 67T^{2} \) |
| 71 | \( 1 + (-2.21 + 4.59i)T + (-44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (-7.82 + 1.78i)T + (65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 - 3.00T + 79T^{2} \) |
| 83 | \( 1 + (-2.42 - 10.6i)T + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (-3.41 - 14.9i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + 1.26iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19696506395387163987456731515, −10.57436879195458741674829076598, −9.461388466704225585172698692030, −8.714958143134460024836921522179, −8.081515071616482547273405230076, −6.65127170497088092718226236964, −5.50063485797629861593281890466, −4.87104503042242361771939409109, −3.46031343509282599978922486444, −1.87154727452038228790568781043,
0.39156268898619283943498560204, 2.61909371884823266526528006375, 4.29596821548852623481587073263, 4.57820211441644993822615468333, 6.13706455184546376847961772750, 7.41414793253099290319571498748, 8.079714367347595532458184018393, 8.934361564823593724945795790132, 10.00609387485974983454851325115, 10.66482058521210267226040192690