L(s) = 1 | + (0.105 + 0.0611i)2-s + (−0.792 + 1.54i)3-s + (−0.992 − 1.71i)4-s + (0.264 + 0.458i)5-s + (−0.178 + 0.114i)6-s − 0.487i·8-s + (−1.74 − 2.44i)9-s + 0.0647i·10-s + (−3.64 − 2.10i)11-s + (3.43 − 0.166i)12-s + (1.74 − 1.00i)13-s + (−0.915 + 0.0444i)15-s + (−1.95 + 3.38i)16-s − 4.38·17-s + (−0.0355 − 0.365i)18-s − 5.24i·19-s + ⋯ |
L(s) = 1 | + (0.0749 + 0.0432i)2-s + (−0.457 + 0.889i)3-s + (−0.496 − 0.859i)4-s + (0.118 + 0.205i)5-s + (−0.0727 + 0.0468i)6-s − 0.172i·8-s + (−0.581 − 0.813i)9-s + 0.0204i·10-s + (−1.09 − 0.633i)11-s + (0.991 − 0.0480i)12-s + (0.484 − 0.279i)13-s + (−0.236 + 0.0114i)15-s + (−0.488 + 0.846i)16-s − 1.06·17-s + (−0.00836 − 0.0861i)18-s − 1.20i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.178 + 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.178 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.387761 - 0.464574i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.387761 - 0.464574i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.792 - 1.54i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.105 - 0.0611i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.264 - 0.458i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.64 + 2.10i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.74 + 1.00i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.38T + 17T^{2} \) |
| 19 | \( 1 + 5.24iT - 19T^{2} \) |
| 23 | \( 1 + (-5.43 + 3.13i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (7.27 + 4.20i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.03 - 0.595i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.23T + 37T^{2} \) |
| 41 | \( 1 + (-0.0994 - 0.172i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.96 + 6.86i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.98 - 8.63i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 4.21iT - 53T^{2} \) |
| 59 | \( 1 + (-6.71 - 11.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (11.3 + 6.55i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.29 - 5.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.50iT - 71T^{2} \) |
| 73 | \( 1 + 5.61iT - 73T^{2} \) |
| 79 | \( 1 + (0.286 - 0.495i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.42 - 9.39i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 12.8T + 89T^{2} \) |
| 97 | \( 1 + (0.493 + 0.285i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96594326695503542468362200738, −10.12825275326960973688373057647, −9.124279206111483733105748316531, −8.536026976916518718280863633758, −6.85583712958787271470830509419, −5.88862548699536851107190577893, −5.11407666249290459851175584531, −4.24103457330641408595241159837, −2.75883211163795406319306481158, −0.38619506429697959919817434384,
1.85878419126486228878169511745, 3.30228219037483415220191616328, 4.75480215608379776907044419109, 5.58840561560599754014684840560, 6.96492343202531641489420704468, 7.61528464022445201147609089919, 8.519516838016244591551179901601, 9.380564075840275683707875796641, 10.76354336142456588537778394064, 11.44584698672861242958532218154