L(s) = 1 | + (0.920 + 1.59i)2-s + (1.58 − 0.691i)3-s + (−0.695 + 1.20i)4-s − 1.33·5-s + (2.56 + 1.89i)6-s + 1.12·8-s + (2.04 − 2.19i)9-s + (−1.22 − 2.12i)10-s + 1.51·11-s + (−0.271 + 2.39i)12-s + (2.58 + 4.48i)13-s + (−2.11 + 0.923i)15-s + (2.42 + 4.19i)16-s + (−0.774 − 1.34i)17-s + (5.38 + 1.23i)18-s + (1.25 − 2.16i)19-s + ⋯ |
L(s) = 1 | + (0.650 + 1.12i)2-s + (0.916 − 0.399i)3-s + (−0.347 + 0.601i)4-s − 0.596·5-s + (1.04 + 0.773i)6-s + 0.396·8-s + (0.681 − 0.732i)9-s + (−0.388 − 0.673i)10-s + 0.456·11-s + (−0.0782 + 0.690i)12-s + (0.717 + 1.24i)13-s + (−0.547 + 0.238i)15-s + (0.605 + 1.04i)16-s + (−0.187 − 0.325i)17-s + (1.26 + 0.291i)18-s + (0.287 − 0.497i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.502 - 0.864i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.502 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.21476 + 1.27364i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.21476 + 1.27364i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.58 + 0.691i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.920 - 1.59i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 1.33T + 5T^{2} \) |
| 11 | \( 1 - 1.51T + 11T^{2} \) |
| 13 | \( 1 + (-2.58 - 4.48i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.774 + 1.34i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.25 + 2.16i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.36T + 23T^{2} \) |
| 29 | \( 1 + (0.0309 - 0.0536i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.92 - 3.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.281 - 0.487i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.51 + 7.81i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.09 + 8.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.75 + 8.24i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.755 - 1.30i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.22 - 7.31i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.61 - 2.80i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.46 - 6.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.3T + 71T^{2} \) |
| 73 | \( 1 + (-1.37 - 2.38i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.95 - 5.12i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.80 - 4.85i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.703 - 1.21i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.09 + 10.5i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57862115568768003898994416831, −10.24402375392758827034874550188, −9.027430865879565693284981043878, −8.364769968244112286055262976425, −7.31344097473194406127492220885, −6.83788014828454802105853902836, −5.78893590918157855457841565579, −4.30604828376719266830605054973, −3.72252134113733103744928619531, −1.84390941972700604460180257677,
1.68505845760428203374217051414, 3.07912170280033526303320125733, 3.76967414024611202620764028512, 4.58106007426927281003377283841, 6.01178638763030385803497229251, 7.81019147584096170087127700638, 8.045726550561063517039244192085, 9.474113904203885674076264748632, 10.23136302391429784547054680186, 11.03483514423804225298472100532