| L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1.69 + 2.93i)7-s + (1.84 − 3.19i)11-s + (0.867 + 1.50i)13-s + 5.93·17-s − 5.10·19-s + (−2.43 − 4.21i)23-s + (−0.499 + 0.866i)25-s + (0.600 − 1.03i)29-s + (2.28 + 3.95i)31-s + 3.39·35-s − 3.14·37-s + (4.32 + 7.48i)41-s + (3.55 − 6.14i)43-s + (1.95 − 3.38i)47-s + ⋯ |
| L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.641 + 1.11i)7-s + (0.556 − 0.963i)11-s + (0.240 + 0.416i)13-s + 1.43·17-s − 1.17·19-s + (−0.507 − 0.878i)23-s + (−0.0999 + 0.173i)25-s + (0.111 − 0.193i)29-s + (0.410 + 0.710i)31-s + 0.573·35-s − 0.517·37-s + (0.674 + 1.16i)41-s + (0.541 − 0.937i)43-s + (0.284 − 0.493i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.641547805\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.641547805\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| good | 7 | \( 1 + (1.69 - 2.93i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.84 + 3.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.867 - 1.50i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 5.93T + 17T^{2} \) |
| 19 | \( 1 + 5.10T + 19T^{2} \) |
| 23 | \( 1 + (2.43 + 4.21i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.600 + 1.03i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.28 - 3.95i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3.14T + 37T^{2} \) |
| 41 | \( 1 + (-4.32 - 7.48i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.55 + 6.14i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.95 + 3.38i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.25T + 53T^{2} \) |
| 59 | \( 1 + (1.39 + 2.41i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.0729 + 0.126i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.54 - 6.13i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.110T + 71T^{2} \) |
| 73 | \( 1 - 15.3T + 73T^{2} \) |
| 79 | \( 1 + (2.39 - 4.14i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.38 + 14.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.37T + 89T^{2} \) |
| 97 | \( 1 + (-3.76 + 6.51i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504387533836235390305248364715, −7.87550240644066537332762785360, −6.69576672417936586553697081178, −6.15826765779846677263242014960, −5.59548738508412125367205061877, −4.63154224796790359310955154383, −3.71816392694606299791844608957, −3.00713634886232641413585910448, −1.98540607820550218174554435665, −0.72088128472056082450428819521,
0.72769572984088505804438300861, 1.89119449500653670806766744525, 3.10885854685490637208138134566, 3.83700195926462353158139019805, 4.36930767301171326953122487321, 5.50622524213692537911727289135, 6.33881017195499950841878607758, 6.92328448216078996205413404088, 7.68031656224319200239734707029, 8.071469927007663556624399549012