Properties

Label 2-4320-12.11-c1-0-9
Degree $2$
Conductor $4320$
Sign $-0.707 - 0.707i$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s + 3.18i·7-s − 2.46·11-s + 1.87·13-s − 4.53i·17-s + 6.27i·19-s + 0.551·23-s − 25-s − 4.88i·29-s + 5.26i·31-s + 3.18·35-s − 5.30·37-s + 8.02i·41-s − 7.54i·43-s + 3.90·47-s + ⋯
L(s)  = 1  − 0.447i·5-s + 1.20i·7-s − 0.741·11-s + 0.519·13-s − 1.09i·17-s + 1.44i·19-s + 0.115·23-s − 0.200·25-s − 0.906i·29-s + 0.945i·31-s + 0.537·35-s − 0.872·37-s + 1.25i·41-s − 1.15i·43-s + 0.569·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4320} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8702123633\)
\(L(\frac12)\) \(\approx\) \(0.8702123633\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + iT \)
good7 \( 1 - 3.18iT - 7T^{2} \)
11 \( 1 + 2.46T + 11T^{2} \)
13 \( 1 - 1.87T + 13T^{2} \)
17 \( 1 + 4.53iT - 17T^{2} \)
19 \( 1 - 6.27iT - 19T^{2} \)
23 \( 1 - 0.551T + 23T^{2} \)
29 \( 1 + 4.88iT - 29T^{2} \)
31 \( 1 - 5.26iT - 31T^{2} \)
37 \( 1 + 5.30T + 37T^{2} \)
41 \( 1 - 8.02iT - 41T^{2} \)
43 \( 1 + 7.54iT - 43T^{2} \)
47 \( 1 - 3.90T + 47T^{2} \)
53 \( 1 - 8.82iT - 53T^{2} \)
59 \( 1 + 5.06T + 59T^{2} \)
61 \( 1 - 0.587T + 61T^{2} \)
67 \( 1 - 6.54iT - 67T^{2} \)
71 \( 1 + 3.16T + 71T^{2} \)
73 \( 1 + 6.65T + 73T^{2} \)
79 \( 1 + 3.21iT - 79T^{2} \)
83 \( 1 + 9.38T + 83T^{2} \)
89 \( 1 - 4.99iT - 89T^{2} \)
97 \( 1 - 8.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.679942865311905119685769804240, −8.026515347470640171517439146548, −7.32205770168370246888545157435, −6.28258051246571094908882565575, −5.61644639254628830032802684213, −5.13187598808562115555487678156, −4.17500763901287367825540810880, −3.13347110443748639765758005737, −2.37427211598805336934755581693, −1.31662756588333694023226409697, 0.24509826919234156132380620605, 1.49843687503087009036895004677, 2.64780898736161015350324082957, 3.54364093060680859973173298758, 4.22804526765214506199075373006, 5.09194904974691553895522895023, 5.97356547705069885130679192251, 6.81384655667784548718294716390, 7.28040471428961640321525094359, 8.038207629256550118608743098910

Graph of the $Z$-function along the critical line