| L(s)  = 1  |         + (2.23 − 0.123i)5-s     − 2.78i·7-s         − 3.56·11-s     − 0.895i·13-s         − 6.09i·17-s     − 4.09·19-s         − 1.24i·23-s     + (4.96 − 0.551i)25-s         − 5.45·29-s     − 5.84·31-s         + (−0.344 − 6.21i)35-s     + 5.56i·37-s         + 1.68·41-s     + 3.47i·43-s         + 11.6i·47-s    + ⋯ | 
 
| L(s)  = 1  |         + (0.998 − 0.0552i)5-s     − 1.05i·7-s         − 1.07·11-s     − 0.248i·13-s         − 1.47i·17-s     − 0.939·19-s         − 0.260i·23-s     + (0.993 − 0.110i)25-s         − 1.01·29-s     − 1.04·31-s         + (−0.0581 − 1.05i)35-s     + 0.915i·37-s         + 0.262·41-s     + 0.529i·43-s         + 1.70i·47-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0552i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.6881755947\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.6881755947\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 \)  | 
 | 5 |  \( 1 + (-2.23 + 0.123i)T \)  | 
| good | 7 |  \( 1 + 2.78iT - 7T^{2} \)  | 
 | 11 |  \( 1 + 3.56T + 11T^{2} \)  | 
 | 13 |  \( 1 + 0.895iT - 13T^{2} \)  | 
 | 17 |  \( 1 + 6.09iT - 17T^{2} \)  | 
 | 19 |  \( 1 + 4.09T + 19T^{2} \)  | 
 | 23 |  \( 1 + 1.24iT - 23T^{2} \)  | 
 | 29 |  \( 1 + 5.45T + 29T^{2} \)  | 
 | 31 |  \( 1 + 5.84T + 31T^{2} \)  | 
 | 37 |  \( 1 - 5.56iT - 37T^{2} \)  | 
 | 41 |  \( 1 - 1.68T + 41T^{2} \)  | 
 | 43 |  \( 1 - 3.47iT - 43T^{2} \)  | 
 | 47 |  \( 1 - 11.6iT - 47T^{2} \)  | 
 | 53 |  \( 1 + 3.84iT - 53T^{2} \)  | 
 | 59 |  \( 1 + 9.82T + 59T^{2} \)  | 
 | 61 |  \( 1 + 11.4T + 61T^{2} \)  | 
 | 67 |  \( 1 - 7.13iT - 67T^{2} \)  | 
 | 71 |  \( 1 + 15.3T + 71T^{2} \)  | 
 | 73 |  \( 1 + 7.34iT - 73T^{2} \)  | 
 | 79 |  \( 1 - 12.5T + 79T^{2} \)  | 
 | 83 |  \( 1 + 7.68iT - 83T^{2} \)  | 
 | 89 |  \( 1 + 3.25T + 89T^{2} \)  | 
 | 97 |  \( 1 - 15.6iT - 97T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.77112623652046317253480960386, −7.43914855980853003711034356819, −6.52828161796189975167492096133, −5.82925564401819673152624396766, −4.98422605303146698086826873261, −4.44130231926528224690031567059, −3.21368637486474667807423478967, −2.49318736931207973407971454763, −1.42180053110679448465771719084, −0.17135982159224845243784859234, 
1.82593503286141099287454460845, 2.17388668006426751805487223751, 3.23101071346928614248929064526, 4.25895241397653762159091165119, 5.34572552125355826605778960530, 5.72391979759181743006307623421, 6.32432273378614149493534423300, 7.29445398289900980059787820370, 8.092533952545552674835001901940, 8.939545464484431481990907104833