Properties

Label 8-4320e4-1.1-c1e4-0-6
Degree $8$
Conductor $3.483\times 10^{14}$
Sign $1$
Analytic cond. $1.41593\times 10^{6}$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s + 19·25-s + 20·31-s + 10·49-s − 12·53-s + 40·79-s + 60·83-s − 60·107-s − 10·121-s + 42·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 120·155-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 2.68·5-s + 19/5·25-s + 3.59·31-s + 10/7·49-s − 1.64·53-s + 4.50·79-s + 6.58·83-s − 5.80·107-s − 0.909·121-s + 3.75·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 9.63·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.41593\times 10^{6}\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(13.54971367\)
\(L(\frac12)\) \(\approx\) \(13.54971367\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 - 6 T + 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 3 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 3 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2$ \( ( 1 + p T^{2} )^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 6 T + 65 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 123 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 123 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 30 T + 383 T^{2} - 30 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 93 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 93 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.98164125927132612265884487472, −5.71784766038546335383510425193, −5.57123934158246321745529866395, −5.25244831611733812850402622516, −5.06438700631489712013046754584, −5.03249925164661464188541986496, −4.88713363627910998152398852501, −4.65965073601846134026916395668, −4.50946078762964627774566901667, −4.02925762100155927418124077467, −3.85441093565431295985370769664, −3.71710301467746601081274263795, −3.55525346482591274314836628573, −3.14679529054714693457418294591, −2.85798895599717833703514615525, −2.72499085609469701486428561142, −2.42759142656421376448140922481, −2.41374173686696653629809664309, −2.17123528714976401875446625028, −1.82100510959271837410108288437, −1.64569260894103388567602860367, −1.23698641649096964904934138472, −1.04334835271819314882486502151, −0.78629376689442543067410922033, −0.43944588299476600526373906489, 0.43944588299476600526373906489, 0.78629376689442543067410922033, 1.04334835271819314882486502151, 1.23698641649096964904934138472, 1.64569260894103388567602860367, 1.82100510959271837410108288437, 2.17123528714976401875446625028, 2.41374173686696653629809664309, 2.42759142656421376448140922481, 2.72499085609469701486428561142, 2.85798895599717833703514615525, 3.14679529054714693457418294591, 3.55525346482591274314836628573, 3.71710301467746601081274263795, 3.85441093565431295985370769664, 4.02925762100155927418124077467, 4.50946078762964627774566901667, 4.65965073601846134026916395668, 4.88713363627910998152398852501, 5.03249925164661464188541986496, 5.06438700631489712013046754584, 5.25244831611733812850402622516, 5.57123934158246321745529866395, 5.71784766038546335383510425193, 5.98164125927132612265884487472

Graph of the $Z$-function along the critical line