L(s) = 1 | − 281.·5-s + 23.3i·7-s − 1.84e4i·11-s − 4.47e4·13-s − 9.43e4·17-s − 7.80e4i·19-s + 5.01e5i·23-s − 3.11e5·25-s − 6.37e5·29-s − 3.95e5i·31-s − 6.58e3i·35-s + 1.01e6·37-s + 3.04e6·41-s + 2.55e6i·43-s − 7.20e6i·47-s + ⋯ |
L(s) = 1 | − 0.450·5-s + 0.00974i·7-s − 1.25i·11-s − 1.56·13-s − 1.12·17-s − 0.598i·19-s + 1.79i·23-s − 0.797·25-s − 0.900·29-s − 0.427i·31-s − 0.00438i·35-s + 0.539·37-s + 1.07·41-s + 0.746i·43-s − 1.47i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.7598595158\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7598595158\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 281.T + 3.90e5T^{2} \) |
| 7 | \( 1 - 23.3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 1.84e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 4.47e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 9.43e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 7.80e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 5.01e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 6.37e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + 3.95e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 1.01e6T + 3.51e12T^{2} \) |
| 41 | \( 1 - 3.04e6T + 7.98e12T^{2} \) |
| 43 | \( 1 - 2.55e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 7.20e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + 1.51e7T + 6.22e13T^{2} \) |
| 59 | \( 1 + 1.76e5iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.37e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + 3.67e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 1.04e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 1.27e7T + 8.06e14T^{2} \) |
| 79 | \( 1 - 4.53e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 6.30e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 3.79e7T + 3.93e15T^{2} \) |
| 97 | \( 1 - 7.73e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.702959421636359908229869916921, −9.113984066464192038813212544444, −7.925625453975817470039447103697, −7.31709876732678135771473199220, −6.13423138327412224290229290838, −5.16863591311533312719561468296, −4.10804722664985097985054710049, −3.06326494387686766372454235484, −1.97790411690950737205420658362, −0.48226450369701853598741671435,
0.26312322410360832262044499374, 1.88482538054186747358867199489, 2.67938153478269627958080881669, 4.26047846816463022452864513826, 4.69077514985275635746848467321, 6.07799189589720660231824991955, 7.18195427631815113601796584054, 7.70781913020458304874852248302, 8.913745699697387307267572718748, 9.765007410915727818932630293938