L(s) = 1 | − 612.·5-s − 3.29e3i·7-s + 5.14e3i·11-s + 2.62e4·13-s − 1.55e5·17-s + 1.21e5i·19-s − 4.97e5i·23-s − 1.52e4·25-s + 1.00e6·29-s + 1.51e6i·31-s + 2.01e6i·35-s − 2.43e6·37-s − 5.45e6·41-s + 2.74e6i·43-s − 8.83e6i·47-s + ⋯ |
L(s) = 1 | − 0.980·5-s − 1.37i·7-s + 0.351i·11-s + 0.918·13-s − 1.86·17-s + 0.929i·19-s − 1.77i·23-s − 0.0389·25-s + 1.42·29-s + 1.64i·31-s + 1.34i·35-s − 1.30·37-s − 1.93·41-s + 0.803i·43-s − 1.81i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.9187068766\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9187068766\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 612.T + 3.90e5T^{2} \) |
| 7 | \( 1 + 3.29e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 5.14e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 2.62e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 1.55e5T + 6.97e9T^{2} \) |
| 19 | \( 1 - 1.21e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + 4.97e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 1.00e6T + 5.00e11T^{2} \) |
| 31 | \( 1 - 1.51e6iT - 8.52e11T^{2} \) |
| 37 | \( 1 + 2.43e6T + 3.51e12T^{2} \) |
| 41 | \( 1 + 5.45e6T + 7.98e12T^{2} \) |
| 43 | \( 1 - 2.74e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 8.83e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + 7.85e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 1.93e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 1.59e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.93e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 2.01e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 9.41e6T + 8.06e14T^{2} \) |
| 79 | \( 1 + 6.11e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 2.44e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 - 3.51e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 3.81e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30348939367088814935491346174, −8.614421510863444840414173964314, −8.269119651135419614871165300759, −6.90252619674340893847523897858, −6.64218582331868565688387224533, −4.81472553183943296394925806135, −4.13790146108568856941722188862, −3.32533244054835933628744162518, −1.75496752346290952265273920505, −0.58150275283993142979611332902,
0.28429087514168058724107262025, 1.79273628663652621988828680693, 2.89579320226923925211759477848, 3.91398064403435613958469753341, 4.98746657336045429662844762508, 6.03235016466304667787170221430, 6.93026412271333271212719553382, 8.162956094477905400999387031604, 8.722431052409579602345590493441, 9.496950913498151156138266534148