L(s) = 1 | + 891.·5-s − 2.85e3i·7-s + 3.64e3i·11-s + 3.27e4·13-s − 1.09e5·17-s + 8.88e3i·19-s + 1.51e3i·23-s + 4.03e5·25-s + 1.11e6·29-s + 8.31e5i·31-s − 2.54e6i·35-s + 9.19e5·37-s + 3.16e6·41-s + 5.51e6i·43-s + 3.07e6i·47-s + ⋯ |
L(s) = 1 | + 1.42·5-s − 1.19i·7-s + 0.248i·11-s + 1.14·13-s − 1.31·17-s + 0.0681i·19-s + 0.00543i·23-s + 1.03·25-s + 1.58·29-s + 0.900i·31-s − 1.69i·35-s + 0.490·37-s + 1.12·41-s + 1.61i·43-s + 0.629i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(3.493244176\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.493244176\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 891.T + 3.90e5T^{2} \) |
| 7 | \( 1 + 2.85e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 3.64e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 3.27e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 1.09e5T + 6.97e9T^{2} \) |
| 19 | \( 1 - 8.88e3iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 1.51e3iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 1.11e6T + 5.00e11T^{2} \) |
| 31 | \( 1 - 8.31e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 9.19e5T + 3.51e12T^{2} \) |
| 41 | \( 1 - 3.16e6T + 7.98e12T^{2} \) |
| 43 | \( 1 - 5.51e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 3.07e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 7.07e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 1.91e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 4.78e6T + 1.91e14T^{2} \) |
| 67 | \( 1 + 3.07e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 3.49e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 3.05e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + 3.93e6iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 8.57e6iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 2.85e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 1.67e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.789897887806221097173070238438, −8.988539414801704180632015988636, −7.953642347785634071994763355392, −6.64493131250365559028362196326, −6.28146573764014547523554304844, −4.96878950245787698161567641615, −4.04931980736399688646976838206, −2.73410536855731999132312902913, −1.60796882189697664016761462686, −0.78731864325179016702465350950,
0.887231231341361859932075493637, 2.09983971626007150917055161826, 2.66322164878510815978524054706, 4.20200625834741270296572175293, 5.52404153204810227414359598510, 5.98667193772693337614135319842, 6.84229346793965237157099675306, 8.518920798114830766768057412205, 8.878122635247956875379289625310, 9.808599872737552211666138206300