| L(s) = 1 | + (16.1 − 9.30i)5-s + (10.2 + 5.89i)7-s + (30.2 − 52.4i)11-s + (43.2 + 74.8i)13-s + 49.3i·17-s − 17.5i·19-s + (−50.2 − 86.9i)23-s + (110. − 191. i)25-s + (41.5 + 24.0i)29-s + (−227. + 131. i)31-s + 219.·35-s + 143.·37-s + (2.47 − 1.42i)41-s + (79.0 + 45.6i)43-s + (−65.9 + 114. i)47-s + ⋯ |
| L(s) = 1 | + (1.44 − 0.832i)5-s + (0.551 + 0.318i)7-s + (0.830 − 1.43i)11-s + (0.922 + 1.59i)13-s + 0.704i·17-s − 0.211i·19-s + (−0.455 − 0.788i)23-s + (0.886 − 1.53i)25-s + (0.266 + 0.153i)29-s + (−1.31 + 0.759i)31-s + 1.06·35-s + 0.636·37-s + (0.00942 − 0.00544i)41-s + (0.280 + 0.161i)43-s + (−0.204 + 0.354i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.932093794\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.932093794\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-16.1 + 9.30i)T + (62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + (-10.2 - 5.89i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-30.2 + 52.4i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-43.2 - 74.8i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 - 49.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 17.5iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (50.2 + 86.9i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-41.5 - 24.0i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (227. - 131. i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 143.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-2.47 + 1.42i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-79.0 - 45.6i)T + (3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (65.9 - 114. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 187. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (119. + 207. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-221. + 383. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-266. + 153. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 402.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 857.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (458. + 264. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-202. + 351. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 - 238. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-72.5 + 125. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78202984747419859592062632700, −9.491849562825137135887222493892, −8.876550312191567386768807916450, −8.369089106445945536652492080191, −6.49895980766201343699828381904, −6.04685101945413709279120109050, −4.98307314946517967571420436615, −3.79719819341019566857064892947, −2.01873148267139372002755195047, −1.18599876068755395405900509412,
1.34351407486945787427917158554, 2.41597675982815840986780657168, 3.78198038404013609405727579430, 5.22890966260958884525157248373, 6.04289803136616394382566621488, 7.03728458859358815597535768065, 7.895109195577828770092208591395, 9.307914607821197501758155851650, 9.909369103355174345993138144098, 10.66084587847460935218252324302