Properties

Label 2-430-43.31-c1-0-1
Degree $2$
Conductor $430$
Sign $-0.568 - 0.822i$
Analytic cond. $3.43356$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 + 0.433i)2-s + (−0.993 + 0.677i)3-s + (0.623 − 0.781i)4-s + (0.733 + 0.680i)5-s + (0.601 − 1.04i)6-s + (−0.895 − 1.55i)7-s + (−0.222 + 0.974i)8-s + (−0.567 + 1.44i)9-s + (−0.955 − 0.294i)10-s + (1.01 + 1.26i)11-s + (−0.0898 + 1.19i)12-s + (3.87 − 1.19i)13-s + (1.47 + 1.00i)14-s + (−1.18 − 0.179i)15-s + (−0.222 − 0.974i)16-s + (−4.64 + 4.30i)17-s + ⋯
L(s)  = 1  + (−0.637 + 0.306i)2-s + (−0.573 + 0.391i)3-s + (0.311 − 0.390i)4-s + (0.327 + 0.304i)5-s + (0.245 − 0.425i)6-s + (−0.338 − 0.586i)7-s + (−0.0786 + 0.344i)8-s + (−0.189 + 0.482i)9-s + (−0.302 − 0.0932i)10-s + (0.304 + 0.382i)11-s + (−0.0259 + 0.346i)12-s + (1.07 − 0.331i)13-s + (0.395 + 0.269i)14-s + (−0.306 − 0.0462i)15-s + (−0.0556 − 0.243i)16-s + (−1.12 + 1.04i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.568 - 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.568 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(430\)    =    \(2 \cdot 5 \cdot 43\)
Sign: $-0.568 - 0.822i$
Analytic conductor: \(3.43356\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{430} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 430,\ (\ :1/2),\ -0.568 - 0.822i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.314199 + 0.599142i\)
\(L(\frac12)\) \(\approx\) \(0.314199 + 0.599142i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.900 - 0.433i)T \)
5 \( 1 + (-0.733 - 0.680i)T \)
43 \( 1 + (6.48 - 0.964i)T \)
good3 \( 1 + (0.993 - 0.677i)T + (1.09 - 2.79i)T^{2} \)
7 \( 1 + (0.895 + 1.55i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1.01 - 1.26i)T + (-2.44 + 10.7i)T^{2} \)
13 \( 1 + (-3.87 + 1.19i)T + (10.7 - 7.32i)T^{2} \)
17 \( 1 + (4.64 - 4.30i)T + (1.27 - 16.9i)T^{2} \)
19 \( 1 + (-1.64 - 4.19i)T + (-13.9 + 12.9i)T^{2} \)
23 \( 1 + (4.73 - 0.713i)T + (21.9 - 6.77i)T^{2} \)
29 \( 1 + (-5.04 - 3.43i)T + (10.5 + 26.9i)T^{2} \)
31 \( 1 + (0.0732 - 0.977i)T + (-30.6 - 4.62i)T^{2} \)
37 \( 1 + (4.55 - 7.88i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (5.81 - 2.80i)T + (25.5 - 32.0i)T^{2} \)
47 \( 1 + (7.18 - 9.01i)T + (-10.4 - 45.8i)T^{2} \)
53 \( 1 + (-7.40 - 2.28i)T + (43.7 + 29.8i)T^{2} \)
59 \( 1 + (0.341 + 1.49i)T + (-53.1 + 25.5i)T^{2} \)
61 \( 1 + (-0.840 - 11.2i)T + (-60.3 + 9.09i)T^{2} \)
67 \( 1 + (4.98 + 12.7i)T + (-49.1 + 45.5i)T^{2} \)
71 \( 1 + (-12.4 - 1.87i)T + (67.8 + 20.9i)T^{2} \)
73 \( 1 + (-14.1 + 4.37i)T + (60.3 - 41.1i)T^{2} \)
79 \( 1 + (3.15 + 5.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-9.48 + 6.46i)T + (30.3 - 77.2i)T^{2} \)
89 \( 1 + (-3.21 + 2.19i)T + (32.5 - 82.8i)T^{2} \)
97 \( 1 + (0.162 + 0.203i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.13829629426406517603614421966, −10.34930191423673614644003991478, −10.03408495183803332652858982275, −8.668188620530832832367982036925, −7.937560640792895917743199480439, −6.59557267961808553953777448567, −6.10747883635836062793714446255, −4.85105363344463217442469085628, −3.55010095059108480221248772177, −1.69058232150181016088642182537, 0.57147598044164860495339141134, 2.21792565094453968856473821622, 3.66310461763277189275222430639, 5.25795512923730758427291649872, 6.36863530295795380662582712498, 6.87424011517095237600075017708, 8.478136195214044491007039417444, 8.993536463931282299626205606284, 9.813965692969240481261200374838, 11.06747945232154083079099772081

Graph of the $Z$-function along the critical line