Properties

Label 8-4275e4-1.1-c1e4-0-0
Degree $8$
Conductor $3.340\times 10^{14}$
Sign $1$
Analytic cond. $1.35785\times 10^{6}$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·7-s − 8·13-s + 16-s + 4·19-s − 2·28-s − 4·31-s − 20·37-s + 10·43-s − 9·49-s − 8·52-s + 14·61-s + 5·64-s + 16·67-s − 14·73-s + 4·76-s − 16·79-s + 16·91-s + 16·97-s + 52·103-s + 44·109-s − 2·112-s − 17·121-s − 4·124-s + 127-s + 131-s − 8·133-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.755·7-s − 2.21·13-s + 1/4·16-s + 0.917·19-s − 0.377·28-s − 0.718·31-s − 3.28·37-s + 1.52·43-s − 9/7·49-s − 1.10·52-s + 1.79·61-s + 5/8·64-s + 1.95·67-s − 1.63·73-s + 0.458·76-s − 1.80·79-s + 1.67·91-s + 1.62·97-s + 5.12·103-s + 4.21·109-s − 0.188·112-s − 1.54·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s − 0.693·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(1.35785\times 10^{6}\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.907003577\)
\(L(\frac12)\) \(\approx\) \(2.907003577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{4} \)
good2$D_4\times C_2$ \( 1 - T^{2} - p^{2} T^{6} + p^{4} T^{8} \)
7$D_{4}$ \( ( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2 \wr C_2$ \( 1 + 17 T^{2} + 240 T^{4} + 17 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
17$C_2^2 \wr C_2$ \( 1 + 53 T^{2} + 1272 T^{4} + 53 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 44 T^{2} + 1014 T^{4} + 44 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2 \wr C_2$ \( 1 + 68 T^{2} + 2310 T^{4} + 68 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 10 T + 66 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2 \wr C_2$ \( 1 + 128 T^{2} + 7326 T^{4} + 128 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 - 5 T + 18 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2 \wr C_2$ \( 1 + 89 T^{2} + 5400 T^{4} + 89 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2 \wr C_2$ \( 1 - 28 T^{2} + 5286 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2 \wr C_2$ \( 1 + 92 T^{2} + 6966 T^{4} + 92 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 - 7 T + 60 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
71$D_4\times C_2$ \( 1 + 92 T^{2} + 3750 T^{4} + 92 p^{2} T^{6} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
83$C_2^2 \wr C_2$ \( 1 + 188 T^{2} + 17862 T^{4} + 188 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2 \wr C_2$ \( 1 + 116 T^{2} + 18678 T^{4} + 116 p^{2} T^{6} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 8 T + 78 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.95246750070678135053446123399, −5.62565567288265603421221408236, −5.49837055335831154596819657063, −5.30414609316886304049183975938, −5.28177288860000187406576089339, −4.86258779772334871147392702510, −4.83948118405650059980035898407, −4.54599532496041508820666990428, −4.48144268941522554118218982024, −4.10954196088245437901309916767, −3.78838722298482149956838015853, −3.63077822889216765878315600053, −3.40190423354009054247757610037, −3.29674291406625867574955778236, −3.09648093233906247320946157074, −2.88205191504395570446803560804, −2.46468861792370073945253136611, −2.27132020531464096992493905499, −2.23859557598730157798145403507, −1.80809905665667816975886975958, −1.69549212233742113033041263377, −1.40655745527787418380906670269, −0.67402213270281465886522456170, −0.66338135046827987866037205820, −0.30773948972674420177651002896, 0.30773948972674420177651002896, 0.66338135046827987866037205820, 0.67402213270281465886522456170, 1.40655745527787418380906670269, 1.69549212233742113033041263377, 1.80809905665667816975886975958, 2.23859557598730157798145403507, 2.27132020531464096992493905499, 2.46468861792370073945253136611, 2.88205191504395570446803560804, 3.09648093233906247320946157074, 3.29674291406625867574955778236, 3.40190423354009054247757610037, 3.63077822889216765878315600053, 3.78838722298482149956838015853, 4.10954196088245437901309916767, 4.48144268941522554118218982024, 4.54599532496041508820666990428, 4.83948118405650059980035898407, 4.86258779772334871147392702510, 5.28177288860000187406576089339, 5.30414609316886304049183975938, 5.49837055335831154596819657063, 5.62565567288265603421221408236, 5.95246750070678135053446123399

Graph of the $Z$-function along the critical line