Properties

Label 2-425-1.1-c5-0-33
Degree $2$
Conductor $425$
Sign $1$
Analytic cond. $68.1631$
Root an. cond. $8.25609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.712·2-s − 8.79·3-s − 31.4·4-s + 6.25·6-s + 199.·7-s + 45.2·8-s − 165.·9-s + 482.·11-s + 276.·12-s − 169.·13-s − 141.·14-s + 975.·16-s + 289·17-s + 117.·18-s − 2.18e3·19-s − 1.75e3·21-s − 343.·22-s + 4.07e3·23-s − 397.·24-s + 120.·26-s + 3.59e3·27-s − 6.28e3·28-s − 3.37e3·29-s − 4.33e3·31-s − 2.14e3·32-s − 4.23e3·33-s − 205.·34-s + ⋯
L(s)  = 1  − 0.125·2-s − 0.563·3-s − 0.984·4-s + 0.0709·6-s + 1.53·7-s + 0.249·8-s − 0.681·9-s + 1.20·11-s + 0.555·12-s − 0.277·13-s − 0.193·14-s + 0.952·16-s + 0.242·17-s + 0.0858·18-s − 1.38·19-s − 0.867·21-s − 0.151·22-s + 1.60·23-s − 0.140·24-s + 0.0349·26-s + 0.948·27-s − 1.51·28-s − 0.746·29-s − 0.810·31-s − 0.369·32-s − 0.677·33-s − 0.0305·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(68.1631\)
Root analytic conductor: \(8.25609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.331444990\)
\(L(\frac12)\) \(\approx\) \(1.331444990\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - 289T \)
good2 \( 1 + 0.712T + 32T^{2} \)
3 \( 1 + 8.79T + 243T^{2} \)
7 \( 1 - 199.T + 1.68e4T^{2} \)
11 \( 1 - 482.T + 1.61e5T^{2} \)
13 \( 1 + 169.T + 3.71e5T^{2} \)
19 \( 1 + 2.18e3T + 2.47e6T^{2} \)
23 \( 1 - 4.07e3T + 6.43e6T^{2} \)
29 \( 1 + 3.37e3T + 2.05e7T^{2} \)
31 \( 1 + 4.33e3T + 2.86e7T^{2} \)
37 \( 1 + 8.81e3T + 6.93e7T^{2} \)
41 \( 1 - 1.11e4T + 1.15e8T^{2} \)
43 \( 1 + 1.76e4T + 1.47e8T^{2} \)
47 \( 1 + 5.55e3T + 2.29e8T^{2} \)
53 \( 1 + 2.83e3T + 4.18e8T^{2} \)
59 \( 1 - 2.91e4T + 7.14e8T^{2} \)
61 \( 1 + 2.22e4T + 8.44e8T^{2} \)
67 \( 1 + 4.32e4T + 1.35e9T^{2} \)
71 \( 1 - 6.41e4T + 1.80e9T^{2} \)
73 \( 1 - 6.62e4T + 2.07e9T^{2} \)
79 \( 1 - 8.09e4T + 3.07e9T^{2} \)
83 \( 1 - 1.99e4T + 3.93e9T^{2} \)
89 \( 1 - 8.91e4T + 5.58e9T^{2} \)
97 \( 1 - 1.63e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59045235646969919278670470669, −9.191434664430081075623582669373, −8.699473983832040169749776097512, −7.79505927372330725358002426030, −6.54885934962240754270834917207, −5.31246025974598716815119017868, −4.76951815128273882441133507673, −3.65709228778607174652088069865, −1.79918528000547288981641364867, −0.66247451803709218126215074361, 0.66247451803709218126215074361, 1.79918528000547288981641364867, 3.65709228778607174652088069865, 4.76951815128273882441133507673, 5.31246025974598716815119017868, 6.54885934962240754270834917207, 7.79505927372330725358002426030, 8.699473983832040169749776097512, 9.191434664430081075623582669373, 10.59045235646969919278670470669

Graph of the $Z$-function along the critical line