Properties

Label 2-425-1.1-c5-0-70
Degree $2$
Conductor $425$
Sign $1$
Analytic cond. $68.1631$
Root an. cond. $8.25609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.4·2-s − 30.2·3-s + 76.7·4-s − 315.·6-s + 254.·7-s + 467.·8-s + 670.·9-s + 51.5·11-s − 2.32e3·12-s − 255.·13-s + 2.64e3·14-s + 2.41e3·16-s + 289·17-s + 6.99e3·18-s − 1.64e3·19-s − 7.67e3·21-s + 537.·22-s − 84.1·23-s − 1.41e4·24-s − 2.66e3·26-s − 1.29e4·27-s + 1.95e4·28-s + 3.46e3·29-s + 6.83e3·31-s + 1.02e4·32-s − 1.55e3·33-s + 3.01e3·34-s + ⋯
L(s)  = 1  + 1.84·2-s − 1.93·3-s + 2.39·4-s − 3.57·6-s + 1.95·7-s + 2.57·8-s + 2.75·9-s + 0.128·11-s − 4.65·12-s − 0.420·13-s + 3.61·14-s + 2.35·16-s + 0.242·17-s + 5.08·18-s − 1.04·19-s − 3.79·21-s + 0.236·22-s − 0.0331·23-s − 5.00·24-s − 0.774·26-s − 3.41·27-s + 4.70·28-s + 0.764·29-s + 1.27·31-s + 1.76·32-s − 0.249·33-s + 0.447·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(68.1631\)
Root analytic conductor: \(8.25609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.102223891\)
\(L(\frac12)\) \(\approx\) \(5.102223891\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - 289T \)
good2 \( 1 - 10.4T + 32T^{2} \)
3 \( 1 + 30.2T + 243T^{2} \)
7 \( 1 - 254.T + 1.68e4T^{2} \)
11 \( 1 - 51.5T + 1.61e5T^{2} \)
13 \( 1 + 255.T + 3.71e5T^{2} \)
19 \( 1 + 1.64e3T + 2.47e6T^{2} \)
23 \( 1 + 84.1T + 6.43e6T^{2} \)
29 \( 1 - 3.46e3T + 2.05e7T^{2} \)
31 \( 1 - 6.83e3T + 2.86e7T^{2} \)
37 \( 1 - 5.38e3T + 6.93e7T^{2} \)
41 \( 1 + 5.91e3T + 1.15e8T^{2} \)
43 \( 1 - 6.64e3T + 1.47e8T^{2} \)
47 \( 1 - 8.39e3T + 2.29e8T^{2} \)
53 \( 1 + 2.82e4T + 4.18e8T^{2} \)
59 \( 1 - 1.32e4T + 7.14e8T^{2} \)
61 \( 1 - 3.94e4T + 8.44e8T^{2} \)
67 \( 1 + 1.14e4T + 1.35e9T^{2} \)
71 \( 1 - 3.22e4T + 1.80e9T^{2} \)
73 \( 1 + 2.32e4T + 2.07e9T^{2} \)
79 \( 1 - 6.16e4T + 3.07e9T^{2} \)
83 \( 1 + 4.27e4T + 3.93e9T^{2} \)
89 \( 1 - 4.83e3T + 5.58e9T^{2} \)
97 \( 1 + 3.71e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96453769642854458567118027538, −10.23370163360367366026205685994, −8.018195181079243543954067317658, −7.01723705006414202693995236386, −6.18378193683268380972436388376, −5.34311400371357324153686039850, −4.69045744866416299487341671316, −4.21547853494953188028205492382, −2.13951368141901098299294824823, −1.07159649754796867997677804315, 1.07159649754796867997677804315, 2.13951368141901098299294824823, 4.21547853494953188028205492382, 4.69045744866416299487341671316, 5.34311400371357324153686039850, 6.18378193683268380972436388376, 7.01723705006414202693995236386, 8.018195181079243543954067317658, 10.23370163360367366026205685994, 10.96453769642854458567118027538

Graph of the $Z$-function along the critical line