L(s) = 1 | − 2-s + 4-s − 5-s − 2.28·7-s − 8-s + 10-s − 5.31·11-s − 5.59·13-s + 2.28·14-s + 16-s − 4.76·17-s + 1.81·19-s − 20-s + 5.31·22-s − 1.81·23-s + 25-s + 5.59·26-s − 2.28·28-s − 4.76·29-s − 0.833·31-s − 32-s + 4.76·34-s + 2.28·35-s + 1.52·37-s − 1.81·38-s + 40-s − 9.12·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.447·5-s − 0.864·7-s − 0.353·8-s + 0.316·10-s − 1.60·11-s − 1.55·13-s + 0.611·14-s + 0.250·16-s − 1.15·17-s + 0.415·19-s − 0.223·20-s + 1.13·22-s − 0.377·23-s + 0.200·25-s + 1.09·26-s − 0.432·28-s − 0.884·29-s − 0.149·31-s − 0.176·32-s + 0.817·34-s + 0.386·35-s + 0.250·37-s − 0.293·38-s + 0.158·40-s − 1.42·41-s + ⋯ |
Λ(s)=(=(4230s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4230s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2035796295 |
L(21) |
≈ |
0.2035796295 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1+T |
| 47 | 1+T |
good | 7 | 1+2.28T+7T2 |
| 11 | 1+5.31T+11T2 |
| 13 | 1+5.59T+13T2 |
| 17 | 1+4.76T+17T2 |
| 19 | 1−1.81T+19T2 |
| 23 | 1+1.81T+23T2 |
| 29 | 1+4.76T+29T2 |
| 31 | 1+0.833T+31T2 |
| 37 | 1−1.52T+37T2 |
| 41 | 1+9.12T+41T2 |
| 43 | 1−0.476T+43T2 |
| 53 | 1+4.76T+53T2 |
| 59 | 1+1.81T+59T2 |
| 61 | 1−12.7T+61T2 |
| 67 | 1+4.09T+67T2 |
| 71 | 1−6.86T+71T2 |
| 73 | 1+6.09T+73T2 |
| 79 | 1−15.1T+79T2 |
| 83 | 1−8T+83T2 |
| 89 | 1−8.62T+89T2 |
| 97 | 1−16.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.251664159803859009443287971722, −7.74567189112693695114841345755, −7.08635597091231373926120623417, −6.46261116250379047016845327529, −5.38154290108312139239686917998, −4.80367228353826690856478237482, −3.61702248263725479266290864634, −2.73425666963857501696261937854, −2.09064740265861626043080291762, −0.25978703992295786536531629789,
0.25978703992295786536531629789, 2.09064740265861626043080291762, 2.73425666963857501696261937854, 3.61702248263725479266290864634, 4.80367228353826690856478237482, 5.38154290108312139239686917998, 6.46261116250379047016845327529, 7.08635597091231373926120623417, 7.74567189112693695114841345755, 8.251664159803859009443287971722