Properties

Label 4-4200e2-1.1-c1e2-0-25
Degree $4$
Conductor $17640000$
Sign $1$
Analytic cond. $1124.74$
Root an. cond. $5.79112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 8·19-s − 12·29-s − 16·31-s − 20·41-s − 49-s − 8·59-s − 20·61-s + 8·71-s − 16·79-s + 81-s − 12·89-s + 20·101-s − 28·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 8·171-s + 173-s + ⋯
L(s)  = 1  − 1/3·9-s + 1.83·19-s − 2.22·29-s − 2.87·31-s − 3.12·41-s − 1/7·49-s − 1.04·59-s − 2.56·61-s + 0.949·71-s − 1.80·79-s + 1/9·81-s − 1.27·89-s + 1.99·101-s − 2.68·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 0.611·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17640000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17640000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1124.74\)
Root analytic conductor: \(5.79112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 17640000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.064861520757445797939535823241, −7.79276907826150006981993084253, −7.47939955074574041020294383822, −7.30429705951522914043457123532, −6.67227472830029634070209693639, −6.59445701614279418311597421393, −5.73241181607972691553633770643, −5.68879767997465844204741802143, −5.25933633419754947274728934243, −5.06685047426033120465002119791, −4.46479175726322757361838560151, −3.84211254162130177098868463801, −3.59148924990920761356962535705, −3.22932194731174226854815383465, −2.85829013442355309935270011728, −2.09673938451124290436619254542, −1.49648659738593880773446478805, −1.47736893272648551878602418355, 0, 0, 1.47736893272648551878602418355, 1.49648659738593880773446478805, 2.09673938451124290436619254542, 2.85829013442355309935270011728, 3.22932194731174226854815383465, 3.59148924990920761356962535705, 3.84211254162130177098868463801, 4.46479175726322757361838560151, 5.06685047426033120465002119791, 5.25933633419754947274728934243, 5.68879767997465844204741802143, 5.73241181607972691553633770643, 6.59445701614279418311597421393, 6.67227472830029634070209693639, 7.30429705951522914043457123532, 7.47939955074574041020294383822, 7.79276907826150006981993084253, 8.064861520757445797939535823241

Graph of the $Z$-function along the critical line