Properties

Label 8-420e4-1.1-c1e4-0-2
Degree $8$
Conductor $31116960000$
Sign $1$
Analytic cond. $126.504$
Root an. cond. $1.83131$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s − 2·7-s + 9-s − 4·13-s − 4·15-s + 14·19-s + 4·21-s + 25-s + 2·27-s − 24·29-s + 2·31-s − 4·35-s + 2·37-s + 8·39-s − 4·43-s + 2·45-s + 12·47-s + 7·49-s − 28·57-s + 12·59-s + 8·61-s − 2·63-s − 8·65-s + 2·67-s − 10·73-s − 2·75-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s − 0.755·7-s + 1/3·9-s − 1.10·13-s − 1.03·15-s + 3.21·19-s + 0.872·21-s + 1/5·25-s + 0.384·27-s − 4.45·29-s + 0.359·31-s − 0.676·35-s + 0.328·37-s + 1.28·39-s − 0.609·43-s + 0.298·45-s + 1.75·47-s + 49-s − 3.70·57-s + 1.56·59-s + 1.02·61-s − 0.251·63-s − 0.992·65-s + 0.244·67-s − 1.17·73-s − 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(126.504\)
Root analytic conductor: \(1.83131\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7724779358\)
\(L(\frac12)\) \(\approx\) \(0.7724779358\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T - 3 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
good11$C_2^3$ \( 1 - 4 T^{2} - 105 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
13$D_{4}$ \( ( 1 + 2 T + 9 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 16 T^{2} - 33 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
23$C_2^3$ \( 1 - 28 T^{2} + 255 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 12 T + 76 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 2 T + 13 T^{2} + 142 T^{3} - 1004 T^{4} + 142 p T^{5} + 13 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 2 T - 53 T^{2} + 34 T^{3} + 1732 T^{4} + 34 p T^{5} - 53 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 64 T^{2} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 2 T + 69 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 34 T^{2} - 1653 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 12 T + 8 T^{2} - 216 T^{3} + 6519 T^{4} - 216 p T^{5} + 8 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 8 T - 2 T^{2} + 448 T^{3} - 3269 T^{4} + 448 p T^{5} - 2 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 2 T - 113 T^{2} + 34 T^{3} + 8932 T^{4} + 34 p T^{5} - 113 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 10 T - 53 T^{2} + 70 T^{3} + 10780 T^{4} + 70 p T^{5} - 53 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 + 11 T + 42 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 12 T + 184 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 12 T - 52 T^{2} - 216 T^{3} + 17679 T^{4} - 216 p T^{5} - 52 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 16 T + 186 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83347337636037704019412163322, −7.65034272377223948055316268734, −7.62314133310564403429009010386, −7.27016364787680368618856649709, −7.17193146483779123811676426189, −7.01852940299237952409717322203, −6.55111335422242991701834561640, −6.30159179171425474207427120701, −5.88716998267454923762085605991, −5.74860372733934330100202842154, −5.66799939797787732853098303803, −5.31768711208281404112084047763, −5.27795176955433360983457336322, −4.94357592168906617971121031521, −4.58061929628997007073982246359, −4.16337751868363385412291349195, −3.66946469448207404319527550891, −3.55013538215165469220858220608, −3.44622082449789052499283315338, −2.68503386982822601627751115173, −2.38530391776947463496428850849, −2.37443482071411292032872693957, −1.36465581120633051088249575763, −1.35276220967991546484170318303, −0.37023026769268605719783216471, 0.37023026769268605719783216471, 1.35276220967991546484170318303, 1.36465581120633051088249575763, 2.37443482071411292032872693957, 2.38530391776947463496428850849, 2.68503386982822601627751115173, 3.44622082449789052499283315338, 3.55013538215165469220858220608, 3.66946469448207404319527550891, 4.16337751868363385412291349195, 4.58061929628997007073982246359, 4.94357592168906617971121031521, 5.27795176955433360983457336322, 5.31768711208281404112084047763, 5.66799939797787732853098303803, 5.74860372733934330100202842154, 5.88716998267454923762085605991, 6.30159179171425474207427120701, 6.55111335422242991701834561640, 7.01852940299237952409717322203, 7.17193146483779123811676426189, 7.27016364787680368618856649709, 7.62314133310564403429009010386, 7.65034272377223948055316268734, 7.83347337636037704019412163322

Graph of the $Z$-function along the critical line