L(s) = 1 | + (1.62 + 0.591i)3-s + (1.94 + 1.10i)5-s + (−2.63 + 0.225i)7-s + (2.30 + 1.92i)9-s + (−1.86 + 1.07i)11-s + (3.89 + 3.89i)13-s + (2.51 + 2.94i)15-s + (1.09 − 4.10i)17-s + (0.631 + 0.364i)19-s + (−4.42 − 1.19i)21-s + (−1.48 − 5.55i)23-s + (2.57 + 4.28i)25-s + (2.60 + 4.49i)27-s − 3.95·29-s + (−2.33 − 4.04i)31-s + ⋯ |
L(s) = 1 | + (0.939 + 0.341i)3-s + (0.870 + 0.492i)5-s + (−0.996 + 0.0853i)7-s + (0.767 + 0.641i)9-s + (−0.561 + 0.324i)11-s + (1.08 + 1.08i)13-s + (0.650 + 0.759i)15-s + (0.266 − 0.994i)17-s + (0.144 + 0.0835i)19-s + (−0.965 − 0.259i)21-s + (−0.310 − 1.15i)23-s + (0.515 + 0.857i)25-s + (0.502 + 0.864i)27-s − 0.735·29-s + (−0.418 − 0.725i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.677 - 0.735i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.677 - 0.735i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80666 + 0.792272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80666 + 0.792272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.62 - 0.591i)T \) |
| 5 | \( 1 + (-1.94 - 1.10i)T \) |
| 7 | \( 1 + (2.63 - 0.225i)T \) |
good | 11 | \( 1 + (1.86 - 1.07i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.89 - 3.89i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.09 + 4.10i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.631 - 0.364i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.48 + 5.55i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 3.95T + 29T^{2} \) |
| 31 | \( 1 + (2.33 + 4.04i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.598 + 2.23i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 4.95iT - 41T^{2} \) |
| 43 | \( 1 + (-3.57 - 3.57i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9.34 + 2.50i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (6.22 + 1.66i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (4.01 + 6.94i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.20 - 10.7i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.606 + 0.162i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 4.00iT - 71T^{2} \) |
| 73 | \( 1 + (-2.79 + 10.4i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (6.61 + 3.81i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.56 - 6.56i)T - 83iT^{2} \) |
| 89 | \( 1 + (-0.656 + 1.13i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.0 + 10.0i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00871285404396698765440631734, −10.24716938377168375505499729323, −9.385340545849060022558091707080, −8.967878919481817075022046483745, −7.56732757606127976921702089840, −6.69634017214577690712194629922, −5.67725365187951451324751680504, −4.22763983935026692356037921508, −3.07999033644322950200124264182, −2.08808607986920091668542143215,
1.35684548422457450397872916914, 2.89020028111275008731861348006, 3.79307671081264256280037741142, 5.57423325511127865307503255992, 6.24173104382732435688313550926, 7.53241572007471144817148806716, 8.429750589800766414742318774873, 9.214291005726946799129626500009, 10.02573392650054554597715990825, 10.79044357993964397996365835682