L(s) = 1 | + (−1.48 − 0.884i)3-s + (−1.06 − 1.96i)5-s + (0.0973 − 2.64i)7-s + (1.43 + 2.63i)9-s + (−2.62 + 1.51i)11-s + 2.31·13-s + (−0.149 + 3.87i)15-s + (−4.49 + 2.59i)17-s + (−5.58 − 3.22i)19-s + (−2.48 + 3.85i)21-s + (−2.43 + 4.21i)23-s + (−2.72 + 4.19i)25-s + (0.194 − 5.19i)27-s − 3.48i·29-s + (1.16 − 0.673i)31-s + ⋯ |
L(s) = 1 | + (−0.859 − 0.510i)3-s + (−0.477 − 0.878i)5-s + (0.0368 − 0.999i)7-s + (0.478 + 0.878i)9-s + (−0.792 + 0.457i)11-s + 0.642·13-s + (−0.0386 + 0.999i)15-s + (−1.09 + 0.629i)17-s + (−1.28 − 0.739i)19-s + (−0.542 + 0.840i)21-s + (−0.507 + 0.879i)23-s + (−0.544 + 0.838i)25-s + (0.0374 − 0.999i)27-s − 0.647i·29-s + (0.209 − 0.120i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 - 0.200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.979 - 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0340545 + 0.335690i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0340545 + 0.335690i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.48 + 0.884i)T \) |
| 5 | \( 1 + (1.06 + 1.96i)T \) |
| 7 | \( 1 + (-0.0973 + 2.64i)T \) |
good | 11 | \( 1 + (2.62 - 1.51i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.31T + 13T^{2} \) |
| 17 | \( 1 + (4.49 - 2.59i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.58 + 3.22i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.43 - 4.21i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.48iT - 29T^{2} \) |
| 31 | \( 1 + (-1.16 + 0.673i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.43 + 1.40i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.06T + 41T^{2} \) |
| 43 | \( 1 + 2.42iT - 43T^{2} \) |
| 47 | \( 1 + (3.30 + 1.90i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.52 - 6.11i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.18 + 10.7i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-11.4 - 6.60i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.72 - 2.14i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.08iT - 71T^{2} \) |
| 73 | \( 1 + (0.0763 + 0.132i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.04 - 5.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10.2iT - 83T^{2} \) |
| 89 | \( 1 + (-7.10 + 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.63T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88907389609599160486880778770, −10.06670012834601994079291998474, −8.690808832682292006903091620238, −7.85313853147857516600549054093, −6.99957856210429350797425010154, −5.96908975126477328174116505956, −4.75806779395858771413182858317, −4.07220052472856640035741193786, −1.83481025487979681958153746803, −0.23126484144467665767489272828,
2.50146546090033568157148042284, 3.81695418265226224662508568167, 4.97714674955867394105138392004, 6.11148207144987512057069208718, 6.67384945244767698849766136048, 8.122525153269180284690034542835, 8.931467233158557315804360069795, 10.21369562670077981429041766415, 10.82239047042636653404410522986, 11.49356528118067703252261650117