L(s) = 1 | + (−0.528 + 1.64i)3-s + (−1.81 − 1.30i)5-s + (2.08 − 1.63i)7-s + (−2.44 − 1.74i)9-s + (−5.09 − 2.93i)11-s − 3.54·13-s + (3.11 − 2.30i)15-s + (2.69 + 1.55i)17-s + (3.58 − 2.06i)19-s + (1.59 + 4.29i)21-s + (−3.57 − 6.19i)23-s + (1.58 + 4.74i)25-s + (4.16 − 3.10i)27-s − 6.84i·29-s + (−3.90 − 2.25i)31-s + ⋯ |
L(s) = 1 | + (−0.304 + 0.952i)3-s + (−0.811 − 0.584i)5-s + (0.786 − 0.617i)7-s + (−0.814 − 0.580i)9-s + (−1.53 − 0.886i)11-s − 0.981·13-s + (0.804 − 0.594i)15-s + (0.652 + 0.376i)17-s + (0.822 − 0.474i)19-s + (0.347 + 0.937i)21-s + (−0.745 − 1.29i)23-s + (0.316 + 0.948i)25-s + (0.801 − 0.598i)27-s − 1.27i·29-s + (−0.701 − 0.404i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.142 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.142 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.392441 - 0.452897i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.392441 - 0.452897i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.528 - 1.64i)T \) |
| 5 | \( 1 + (1.81 + 1.30i)T \) |
| 7 | \( 1 + (-2.08 + 1.63i)T \) |
good | 11 | \( 1 + (5.09 + 2.93i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.54T + 13T^{2} \) |
| 17 | \( 1 + (-2.69 - 1.55i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.58 + 2.06i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.57 + 6.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.84iT - 29T^{2} \) |
| 31 | \( 1 + (3.90 + 2.25i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.70 - 0.986i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.33T + 41T^{2} \) |
| 43 | \( 1 - 3.88iT - 43T^{2} \) |
| 47 | \( 1 + (1.58 - 0.916i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.90 - 11.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.32 - 4.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.702 + 0.405i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.84 + 5.10i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.18iT - 71T^{2} \) |
| 73 | \( 1 + (-1.08 + 1.87i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.05 + 8.75i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.31iT - 83T^{2} \) |
| 89 | \( 1 + (-6.28 - 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87554229471427489353219573834, −10.26235206137913255663267690056, −9.177334500566161159651020401651, −8.020305939717692690124045005915, −7.67910658586159914420718049844, −5.84807165254605903896672636995, −4.93196136487469060309279106975, −4.24875828352151894362966278675, −2.92656948565035278732079016094, −0.38434479742641081610348217401,
1.96134463713943022739312806330, 3.10274938007478255184257945768, 4.97959129938009032137088570441, 5.57006172653450641718190480344, 7.25614808155037652559533334056, 7.51355228458350217983652447768, 8.291816277357438907415302526391, 9.764235697884886646115209783780, 10.75472665060904839001284205798, 11.61840001669829485660744903052