L(s) = 1 | + (−1.16 + 1.28i)3-s + (1.81 + 1.30i)5-s + (2.08 − 1.63i)7-s + (−0.287 − 2.98i)9-s + (5.09 + 2.93i)11-s − 3.54·13-s + (−3.78 + 0.802i)15-s + (−2.69 − 1.55i)17-s + (3.58 − 2.06i)19-s + (−0.331 + 4.57i)21-s + (3.57 + 6.19i)23-s + (1.58 + 4.74i)25-s + (4.16 + 3.10i)27-s + 6.84i·29-s + (−3.90 − 2.25i)31-s + ⋯ |
L(s) = 1 | + (−0.672 + 0.740i)3-s + (0.811 + 0.584i)5-s + (0.786 − 0.617i)7-s + (−0.0959 − 0.995i)9-s + (1.53 + 0.886i)11-s − 0.981·13-s + (−0.978 + 0.207i)15-s + (−0.652 − 0.376i)17-s + (0.822 − 0.474i)19-s + (−0.0723 + 0.997i)21-s + (0.745 + 1.29i)23-s + (0.316 + 0.948i)25-s + (0.801 + 0.598i)27-s + 1.27i·29-s + (−0.701 − 0.404i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.539 - 0.841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.539 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23694 + 0.676177i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23694 + 0.676177i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.16 - 1.28i)T \) |
| 5 | \( 1 + (-1.81 - 1.30i)T \) |
| 7 | \( 1 + (-2.08 + 1.63i)T \) |
good | 11 | \( 1 + (-5.09 - 2.93i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.54T + 13T^{2} \) |
| 17 | \( 1 + (2.69 + 1.55i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.58 + 2.06i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.57 - 6.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6.84iT - 29T^{2} \) |
| 31 | \( 1 + (3.90 + 2.25i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.70 - 0.986i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.33T + 41T^{2} \) |
| 43 | \( 1 - 3.88iT - 43T^{2} \) |
| 47 | \( 1 + (-1.58 + 0.916i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.90 + 11.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.32 + 4.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.702 + 0.405i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.84 + 5.10i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.18iT - 71T^{2} \) |
| 73 | \( 1 + (-1.08 + 1.87i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.05 + 8.75i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.31iT - 83T^{2} \) |
| 89 | \( 1 + (6.28 + 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38913009415351360142311516171, −10.40844453910474018319448864453, −9.594887183700598702155550538810, −9.083633340436085778864848779676, −7.15184946112669236879164147561, −6.86070367374660584773898137184, −5.38193288935222454423223402093, −4.68583017636921245238625360077, −3.44255287290468274461907745832, −1.61146045624605333839494530853,
1.18649834076851967841394859042, 2.35720743845468795554343950496, 4.45404276707807486504024191667, 5.47268887568044462886428351160, 6.17661597354132435956197091319, 7.18186571543020774623579945786, 8.477798479969997217704685277898, 9.018918088252492672081638191219, 10.24330372199463536218856665519, 11.28727943808696895452603322156