Properties

Label 4-4176e2-1.1-c1e2-0-1
Degree $4$
Conductor $17438976$
Sign $1$
Analytic cond. $1111.92$
Root an. cond. $5.77455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·7-s − 2·13-s − 12·23-s + 2·25-s + 8·29-s − 8·35-s − 11·49-s − 4·53-s − 16·59-s − 8·65-s − 10·67-s − 28·71-s − 8·83-s + 4·91-s + 16·103-s + 20·107-s + 18·109-s − 48·115-s + 9·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.755·7-s − 0.554·13-s − 2.50·23-s + 2/5·25-s + 1.48·29-s − 1.35·35-s − 1.57·49-s − 0.549·53-s − 2.08·59-s − 0.992·65-s − 1.22·67-s − 3.32·71-s − 0.878·83-s + 0.419·91-s + 1.57·103-s + 1.93·107-s + 1.72·109-s − 4.47·115-s + 9/11·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17438976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17438976 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17438976\)    =    \(2^{8} \cdot 3^{4} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(1111.92\)
Root analytic conductor: \(5.77455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17438976,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9771253818\)
\(L(\frac12)\) \(\approx\) \(0.9771253818\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
29$C_2$ \( 1 - 8 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 165 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.801193033881346934726583575770, −8.315834039062301716376174880823, −7.76193278202135829803815258937, −7.38045420883397372181333078335, −7.34746150520247091680711571109, −6.42579009821763858050626637711, −6.18598865285740576877548052320, −6.06843794794772977878804490039, −6.02623780266420029379472670977, −5.26305002210859246140982030715, −4.93418705863171696024514206856, −4.37680998764650945137570617182, −4.25544655395146962191472345705, −3.37054819610790891935477746635, −3.19431220740153337371971015114, −2.58227060630973549358423372858, −2.23034490107505268348732896592, −1.61658495578808948874604814716, −1.49829512237434322372300153158, −0.25513166186267830678442102945, 0.25513166186267830678442102945, 1.49829512237434322372300153158, 1.61658495578808948874604814716, 2.23034490107505268348732896592, 2.58227060630973549358423372858, 3.19431220740153337371971015114, 3.37054819610790891935477746635, 4.25544655395146962191472345705, 4.37680998764650945137570617182, 4.93418705863171696024514206856, 5.26305002210859246140982030715, 6.02623780266420029379472670977, 6.06843794794772977878804490039, 6.18598865285740576877548052320, 6.42579009821763858050626637711, 7.34746150520247091680711571109, 7.38045420883397372181333078335, 7.76193278202135829803815258937, 8.315834039062301716376174880823, 8.801193033881346934726583575770

Graph of the $Z$-function along the critical line