| L(s) = 1 | + (4.36 − 7.55i)3-s − 11.4·5-s + (−4.58 − 7.93i)7-s + (−24.5 − 42.5i)9-s + (31.5 − 54.5i)11-s + (−44.4 − 14.8i)13-s + (−49.7 + 86.2i)15-s + (11.8 + 20.4i)17-s + (51.1 + 88.6i)19-s − 79.9·21-s + (−4.51 + 7.81i)23-s + 5.27·25-s − 192.·27-s + (−73.5 + 127. i)29-s − 91.4·31-s + ⋯ |
| L(s) = 1 | + (0.839 − 1.45i)3-s − 1.02·5-s + (−0.247 − 0.428i)7-s + (−0.909 − 1.57i)9-s + (0.863 − 1.49i)11-s + (−0.948 − 0.317i)13-s + (−0.856 + 1.48i)15-s + (0.168 + 0.292i)17-s + (0.617 + 1.07i)19-s − 0.830·21-s + (−0.0409 + 0.0708i)23-s + 0.0422·25-s − 1.37·27-s + (−0.470 + 0.815i)29-s − 0.530·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.830 - 0.557i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.830 - 0.557i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.094005947\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.094005947\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (44.4 + 14.8i)T \) |
| good | 3 | \( 1 + (-4.36 + 7.55i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + 11.4T + 125T^{2} \) |
| 7 | \( 1 + (4.58 + 7.93i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-31.5 + 54.5i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-11.8 - 20.4i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-51.1 - 88.6i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (4.51 - 7.81i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (73.5 - 127. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + 91.4T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-69.1 + 119. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (183. - 317. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (191. + 332. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + 529.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 458.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-339. - 587. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-143. - 248. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-47.5 + 82.3i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (433. + 751. i)T + (-1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 695.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 518.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 764.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-396. + 685. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-243. - 421. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23913858523577106592933037805, −8.955317550777383939455758302458, −8.216666294099041283423829411062, −7.53244450416319687837913648356, −6.81934939141469594401791011064, −5.69124191780442912242994964076, −3.77040459635380588527185508482, −3.15004253319277661801523665721, −1.51335069181788638495966083062, −0.32378839805104207237662974319,
2.34241704698771717983679087125, 3.51733309661857700433956471639, 4.39042427067565074234089195165, 5.05892057710795326215373509977, 6.91019047143627145439248535286, 7.76237272175869091686582326649, 8.860613755026163011296517940781, 9.599333349653054849903079563877, 10.00863844230270810360006828029, 11.44415949498658702603123299230