L(s) = 1 | + (2.73 − 1.57i)3-s + 8.34i·5-s + (−1.62 + 2.80i)7-s + (0.476 − 0.825i)9-s + (−5.60 − 9.70i)11-s + (8.98 + 9.39i)13-s + (13.1 + 22.8i)15-s + (−8.55 + 14.8i)17-s + (−2.25 + 3.90i)19-s + 10.2i·21-s + (−17.1 + 9.90i)23-s − 44.6·25-s + 25.3i·27-s + (−7.78 − 13.4i)29-s + 41.8·31-s + ⋯ |
L(s) = 1 | + (0.910 − 0.525i)3-s + 1.66i·5-s + (−0.231 + 0.401i)7-s + (0.0529 − 0.0917i)9-s + (−0.509 − 0.882i)11-s + (0.691 + 0.722i)13-s + (0.877 + 1.52i)15-s + (−0.503 + 0.871i)17-s + (−0.118 + 0.205i)19-s + 0.487i·21-s + (−0.745 + 0.430i)23-s − 1.78·25-s + 0.940i·27-s + (−0.268 − 0.465i)29-s + 1.34·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0347 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0347 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.36685 + 1.32018i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36685 + 1.32018i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-8.98 - 9.39i)T \) |
good | 3 | \( 1 + (-2.73 + 1.57i)T + (4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 - 8.34iT - 25T^{2} \) |
| 7 | \( 1 + (1.62 - 2.80i)T + (-24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (5.60 + 9.70i)T + (-60.5 + 104. i)T^{2} \) |
| 17 | \( 1 + (8.55 - 14.8i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (2.25 - 3.90i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (17.1 - 9.90i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (7.78 + 13.4i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 - 41.8T + 961T^{2} \) |
| 37 | \( 1 + (41.1 - 23.7i)T + (684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-49.3 + 28.4i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-39.8 - 22.9i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 36.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 14.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-16.0 + 27.7i)T + (-1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-6.63 + 11.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (48.4 + 83.8i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + (-50.7 + 87.9i)T + (-2.52e3 - 4.36e3i)T^{2} \) |
| 73 | \( 1 + 42.3iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 147. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 61.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-130. + 75.1i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-30.1 - 17.4i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00569933418279682288086605497, −10.53764969169589166377363676797, −9.279452357573684064258953888782, −8.320534887986685651774066965889, −7.62482928200446077879467927765, −6.52511764325375696550117948242, −5.90643780068309310072126710979, −3.86008335994149429453337740146, −2.91736264079520958947305115380, −2.06562074979842144316656301115,
0.71750466231193281768053172372, 2.47595800515196371264410866311, 3.94306796887370092721394009339, 4.67250501148065907860356612944, 5.76654220737625169314327643265, 7.31349199540599072340484378823, 8.356118836471765421318820770953, 8.880867407000546366370541171743, 9.694506243162895809899681294419, 10.47098385934455708511854911665