L(s) = 1 | + (−7 − 7i)5-s − 9·9-s + (12 + 5i)13-s + 30i·17-s + 73i·25-s + 40·29-s + (−23 + 23i)37-s + (−49 − 49i)41-s + (63 + 63i)45-s + 49i·49-s − 90·53-s + 22·61-s + (−49 − 119i)65-s + (−103 + 103i)73-s + 81·81-s + ⋯ |
L(s) = 1 | + (−1.40 − 1.40i)5-s − 9-s + (0.923 + 0.384i)13-s + 1.76i·17-s + 2.91i·25-s + 1.37·29-s + (−0.621 + 0.621i)37-s + (−1.19 − 1.19i)41-s + (1.40 + 1.40i)45-s + 0.999i·49-s − 1.69·53-s + 0.360·61-s + (−0.753 − 1.83i)65-s + (−1.41 + 1.41i)73-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0964 - 0.995i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0964 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.337453 + 0.371736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.337453 + 0.371736i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-12 - 5i)T \) |
good | 3 | \( 1 + 9T^{2} \) |
| 5 | \( 1 + (7 + 7i)T + 25iT^{2} \) |
| 7 | \( 1 - 49iT^{2} \) |
| 11 | \( 1 - 121iT^{2} \) |
| 17 | \( 1 - 30iT - 289T^{2} \) |
| 19 | \( 1 + 361iT^{2} \) |
| 23 | \( 1 - 529T^{2} \) |
| 29 | \( 1 - 40T + 841T^{2} \) |
| 31 | \( 1 + 961iT^{2} \) |
| 37 | \( 1 + (23 - 23i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (49 + 49i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 - 1.84e3T^{2} \) |
| 47 | \( 1 - 2.20e3iT^{2} \) |
| 53 | \( 1 + 90T + 2.80e3T^{2} \) |
| 59 | \( 1 - 3.48e3iT^{2} \) |
| 61 | \( 1 - 22T + 3.72e3T^{2} \) |
| 67 | \( 1 + 4.48e3iT^{2} \) |
| 71 | \( 1 + 5.04e3iT^{2} \) |
| 73 | \( 1 + (103 - 103i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3iT^{2} \) |
| 89 | \( 1 + (41 - 41i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (-137 - 137i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41012445304543214122650028070, −10.52838748846064366779925804968, −8.998518068969086855493034632019, −8.469057703608157818500561116102, −7.955303076044463993183207242137, −6.48223321822479379400090335885, −5.35306127225151793049558822652, −4.28761243844372223322587229404, −3.43881269410762970536797088313, −1.31873714462970097180279669404,
0.23461819360420644172229273626, 2.84690447047710187454759625908, 3.40333079498714128439871200488, 4.79239182285770299085814992403, 6.22543251224299680260777824096, 7.04528389378919521813763069367, 7.956044444775796745770994872324, 8.697190444327680956824538648298, 10.08492185490885724146589830752, 10.98801662990072814601146941475